Antidiabetic properties of an Ethanolic leaf extract of Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey (Asteraceae) in SD rats

Author:

Adjei De-Graft Gyamfi,Mireku-Gyimah Nana Ama,Sarkodie Joseph AduseiORCID,Nguessan Benoit Banga,Kodua Emmanuel,Amedior Jonathan Komla,Lartey Irene Asare,Adi-Dako Ofosua,Asiedu-Gyekye Isaac Julius,Nyarko Alexander Kwadwo

Abstract

Abstract Background Diabetes Mellitus (DM) is a major health problem, with a global prevalence of 9.3%, 4.7% in Africa, and 2.5% in Ghana. Despite the availability of the classic anti-diabetic medications, many patients have not benefited from them due to their poor glycemic controls, high costs, inability to halt disease progression, and untoward side effects. Some patients thus resort to plant-based medicines such as those obtained from L. taraxacifolia etc., which have little empirical evidence of efficacy. Therefore, this study investigated the possible antidiabetic effects of the leaf extracts of L. taraxacifolia and some potential mechanistic targets involved. Methodology Ethanolic extract of L. taraxacifolia leaves (LTE) was screened for phytoconstituents and tested for blood glucose-lowering properties in both non-diabetic and streptozotocin-nicotinamide-induced (STZ-NAD) type-2 model diabetic rats for 4 weeks at doses of 500 mg/kg, 750 mg/kg, and 1000 mg/kg. Metformin (200 mg/kg) and glibenclamide (5 mg/kg) were used as positive controls. Effects of LTE on blood glucose, serum lipids, hepatic gluconeogenesis, intestinal glucose absorption, liver enzymes, oral glucose tolerance, and rat organ weights were all studied. Pancreatic Islet histology was also conducted. Results The ethanolic extract of L. taraxacifolia leaves reduced fasting blood glucose levels and suppressed hyperglycemia during the oral glucose tolerance test. In addition, hepatic gluconeogenesis and intestinal glucose absorption were inhibited. The extract lowered levels of liver enzymes, total cholesterol, and LDL cholesterol while increasing HDL cholesterol levels. Again, it reversed STZ-induced weight changes to the liver, kidneys, and pancreas as well as restored the morphology of the pancreatic Islet of Langerhans. Conclusion Launaea taraxacifolia leaves extract (LTE) possesses anti-diabetic constituents and has the potential to repair diabetes-induced damages to the liver, kidney, and pancreatic Islets in SD rats.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference66 articles.

1. Herfindal ET, Gourley DR. Textbook of therapeutics: drug and disease management. 6th ed. Baltimore: Williams and Wilkins Press; 1996. p. 357–80.

2. Lazar DF, Saltiel AR. Lipd Phosphatse as drug discovery targets for type 2 diabetes. Nat Rev. 2006;4:333–42.

3. International Diabetes Federation. IDF Diabetes Atlas ninth edition. Diabetes Res Clin Pract. 2019;9:10–122.

4. Graves LE, Donaghue KC. Management of diabetes complications in youth. Ther Adv Endocrinol Metab. 2019;10(01):1–12.

5. Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4(6):537–47. https://doi.org/10.1016/S2213-8587(16)30010-9.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3