Molecular interaction of bioactive compounds from Senecio biafrae leaf with α-amylase and α-glucosidase receptors

Author:

Ajiboye Basiru OlaitanORCID

Abstract

Abstract Background Diabetes mellitus is one of the silent killer diseases affecting millions of people globally and some of the key enzymes in managing this disease are α-amylase and α-glucosidase This study was designed to investigate the possible molecular interactions between various bioactive compounds of Senecio biafrae leaf on α-amylase and α-glucosidase (enzymes) receptors an important target protein in Type 2 diabetes mellitus. Methods This study involved the investigation of the of gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and kaempferol (ligands) for Lipinski’s rule of five using Molinspiration, ADMET profiles using admetSAR server and molecular docking of 3D structures of the six bioactive compounds and metformin against α-amylase and α-glucosidase were carried out using AutoDockVina. Results The results revealed that caffeic acid, quercetin, and kaempferol obey Lipinski’s rule of five. All the ligands demonstrated high gastrointestinal tract absorption except rutin and chlorogenic acid, only one can serve as a P-glycoprotein substrate and three of the ligands used can act as cytochrome P450 inhibitors isoforms. All the ligands had a high binding affinity than metformin (the standard drug used). Conclusion In can be concluded that some of the bioactive compounds (especially caffeic acid) in Senecio biafrae leaf have antidiabetic activity, which they may serve as a potential antidiabetic drug in the management of diabetes mellitus than metformin.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference24 articles.

1. Adefegha SA, Oboh G. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J Taibah Univer Med Sci. 2015;10(4):521–33. https://doi.org/10.1016/j.jtusci.2015.10.008.

2. Agarwal P, Gupta R. Alpha-amylase inhibition can treat diabetes mellitus. Res Rev J Med Health Sci. 2016;5:1–8.

3. Ajiboye BO, Edobor G, Ojo AO, Onikanni SA, Olaranwaju OI, Muhammad NO. Effect of aqueous leaf extract of Senecio biafrae on hyperglycaemic and serum lipid profile of alloxan-induced diabetic rats. Inter J Dis Disord. 2014;2(11):059–64.

4. Ajiboye BO, Ibukun EO, Edobor G, Ojo OA, Onikanni SA. Qualitative and quantitative analysis of phytochemicals in Senecio biafrae leaf. Inter J Pharma Sci and Res. 2013;1(5):428–32.

5. Ajiboye BO, Ojo OA, Okesola MA, Akinyemi AJ, Talabi JY, Idowu OT, et al. In vitro antioxidant activities and inhibitory effects of phenolic extract of Senecio biafrae (Oliv and Hiern) against key enzymes linked with type II diabetes mellitus and Alzheimer's disease. Food Sci Nut. 2018;6(7):1803–10. https://doi.org/10.1002/fsn3.749.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3