Abstract
Abstract
Background
Barringtonia acutangula (L.) Gaertn, Garcinia indica (Thouars) Choisy, and Feronia limonia (L.) Swingle is widely utilized in traditional folk medicine against diabetes, obesity, and metabolic syndrome but lacks the evidence of compound-protein interaction for the treatment.
Methods
Phytocompounds were retrieved from herbs databases and public repositories. Probable protein targets were predicted using BindingDB (p ≥ 0.7). The pathways modulated by compounds were analyzed using the STRING and KEGG pathways. The compound-protein-pathway network was constructed using Cytoscape v3.6.1. Druglikeness was predicted by Molsoft. Docking was performed by AutoDock vina by PyRx 0.8v.
Results
Among three plants, eleven triterpene saponins from B. acutangula showed druggable characteristics and identified to inhibit the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1/HSD11B1) as a key protein target and also inhibit/modulate other 27 protein molecules involved in the 3 major pathways i.e. Metabolic syndrome, cGMP-PKG signaling, and insulin resistance pathways and also these compounds showed interactions with the active site amino acid residues of 11β-HSD1. Among eleven compounds Barringtogenol B scored the highest binding affinity by forming a hydrogen bond with Ile218 active site residue of 11β-HSD1.
Conclusion
Triterpene saponins contained in B. acutangula bark and seed inhibits 11Β-HSD1 and this multi-compound contained enriched fraction could be the potent treatment regimen for T2DM, obesity, and MetS.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference30 articles.
1. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215–25.
2. Halpern A, Mancini MC, Magalhães ME, Fisberg M, Radominski R, Bertolami MC, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr. 2010;2(1):55.
3. Khanal P, Patil BM, Mandar BK, Dey YN, Duyu T. Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clin Phytoscience. 2019;5(1):35.
4. Chaudhury A, Duvoor C, Dendi R, Sena V, Kraleti S, Chada A, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;24(8):6.
5. McCulloch DK. Management of persistent hyperglycemia in type 2 diabetes mellitus. Waltham MA UpToDate. http://www.uptodate.com/contents/management-of-persistent-hyperglycemia-in-type-2-diabetes-mellitus. Accessed 26 Apr 2020.