Abstract
Abstract
Background
Trend analysis, graphical representation, and summarization of pharmacological research trends were carried out to act as guidance for the future. The main objectives of the research are to find out the complete research trend on the national tree of India so far and to validate its traditional uses along with the pharmacological hepatoprotective activity of Ficus benghalensis L. by developing three in vitro experimental models.
Methods
The fruit of the said plant (F. benghalensis) was extracted with different solvent (petrochemical ether, chloroform, ethyl acetate, ethanol, water) system and the yield value was determined. Phytochemical screening was also done with a different solvent. In an in-vitro study, the liver of freshly slaughtered goat (Capra Capra) was used for various investigational tests, and the hepatotoxicity was induced by carbon tetrachloride (CCl4) at a dose of 2 ml/kg, Acetaminophen at a dose of 7 g/kg, and with Erythromycin at a dose of 1.4 g/kg. The ethanol extract of fruits of F. benghalensis at the doses of 100 mg/kg, 250 mg/kg, and 500 mg/kg were used to observe its hepatoprotective effect against drug/chemical-induced in vitro hepatotoxicity as the model developed here with against a standard molecule, Silymarin.
Results
Amongst all solvents, ethanol was considered to be a universal solvent and resulted in a yield of 2.96%, which is maximum. Phytochemical screening of ethanol extract of fruit also showed the presence of alkaloids, steroids, flavonoids, carbohydrates, and glycosides. The protein concentration of liver homogenate based on comparison with standard protein concentration was found to be 1.6 mg/mL as measured at λmax of 750 nm. About the protein concentration, catalase (enzymatic) activity was also measured using the standard curve of H2O2, to calculate the specific activity of different models to compare the study results.
Conclusion
The significant effect of the reduction of hepatotoxicity was found at a dose of 500 mg/kg of fruit extract against Silymarin. Evaluation of Hepatoprotective activity of fruit in terms of catalase activity with different models flourishing the new research scope to fulfill the shortage of availability of a new, efficient, safe hepatoprotective agent in upcoming days.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference37 articles.
1. Shargel L, WuPong S, Yu ABC. Applied Biopharmaceutics & Pharmacokinetics. 6th ed. New York: McGrawHill; 2012.
2. Mohan H. Textbook of pathology. 6th ed. New Delhi: Jaypee Brothers Medical Publishers; 2010.
3. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000;28(9):1387–404. https://doi.org/10.1016/s0891-5849(00)00224-0.
4. Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y. Free radicals in chemistry biology and medicine. 1st ed. London: OICA International; 2000.
5. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献