Author:
Herland Matthew,Khoshgoftaar Taghi M,Wald Randall
Abstract
Abstract
The amount of data produced within Health Informatics has grown to be quite vast, and analysis of this Big Data grants potentially limitless possibilities for knowledge to be gained. In addition, this information can improve the quality of healthcare offered to patients. However, there are a number of issues that arise when dealing with these vast quantities of data, especially how to analyze this data in a reliable manner. The basic goal of Health Informatics is to take in real world medical data from all levels of human existence to help advance our understanding of medicine and medical practice. This paper will present recent research using Big Data tools and approaches for the analysis of Health Informatics data gathered at multiple levels, including the molecular, tissue, patient, and population levels. In addition to gathering data at multiple levels, multiple levels of questions are addressed: human-scale biology, clinical-scale, and epidemic-scale. We will also analyze and examine possible future work for each of these areas, as well as how combining data from each level may provide the most promising approach to gain the most knowledge in Health Informatics.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Reference72 articles.
1. Chen J, Qian F, Yan W, Shen B: Translational biomedical informatics in the cloud: present and future. BioMed Res Int 2013 2013, 8. [http://dx.doi.org/10.1155/2013/658925]
2. Martin M: Big Cdata/social media combo poised to advance healthcare. HPC Source 2013, 33–35. http://www.scientificcomputing.com/digital-editions/2013/04/hpc-source-big-data-beyond
3. Demchenko Y, Zhao Z, Grosso P, Wibisono A, de Laat C: Addressing Big Data challenges for Scientific Data Infrastructure. In IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom 2012). Taipei, Taiwan: IEEE Computing Society, based in California, USA; 2012:614–617.
4. Huan JL, Pai V, Teredesai AM, Yu S(Eds): IEEE Workshop on BigData In Bioinformatics and Health Care Informatics. 2013. http://www.ittc.ku.edu/~jhuan/BBH/
5. Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS: Monitoring influenza epidemics in China with search query from Baidu. PLoS ONE 2013,8(5):e64323. [doi: 10.1371/journal.pone.0064323] [doi: 10.1371/journal.pone.0064323] 10.1371/journal.pone.0064323
Cited by
159 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献