Using collective intelligence methods to improve government data infrastructures and promote the use of complex data: The example of the Northern Ireland Longitudinal Study

Author:

Lowry EstelleORCID,Hogan Michael J.,Moriarty John,Harney Owen M.,Ruijer Erna,Pilch Monika,Groarke Jenny M.,Hanlon Michelle,Shuttleworth Ian

Abstract

Abstract Background This paper discusses how collective intelligence (CI) methods can be implemented to improve government data infrastructures, not only to support understanding and primary use of complex national data but also to increase the dissemination and secondary impact of research based on these data. The case study uses the Northern Ireland Longitudinal Study (NILS), a member of the UK family of census/administrative data longitudinal studies (UKLS). Methods A stakeholder-engaged CI approach was applied to inform the transformation of the NILS Research Support Unit (RSU) infrastructure to support researchers in their use of government data, including collaborative decision-making and better dissemination of research outputs. Results We provide an overview of NILS RSU infrastructure design changes that have been implemented to date, focusing on a website redesign to meet user information requirements and the formation of better working partnerships between data users and providers within the Northern Ireland data landscape. We also discuss the key challenges faced by the design team during this project of transformation. Conclusion Our primary objective to improve government data infrastructure and to increase dissemination and the impact of research based on data was a complex and multifaceted challenge due to the number of stakeholders involved and their often conflicting perspectives. Results from this CI approach have been pivotal in highlighting how NILS RSU can work collaboratively with users to maximize the potential of this data, in terms of forming multidisciplinary networks to ensure the research is utilized in policy and in the literature and providing academic support and resources to attract new researchers.

Funder

Economic and Social Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3