Hotspots of unimproved sources of drinking water in Ethiopia: mapping and spatial analysis of Ethiopia demographic and health survey Data 2016

Author:

Bogale Getahun GebreORCID

Abstract

Abstract Background More than 35% of the Ethiopian population are using drinking water from unimproved sources. As per the United Nations’ Sustainable Development Goals, Ethiopia is aspiring to achieve universal and equitable access to safe and affordable drinking water for all by 2030. For these goals to be accomplished, it is important to map the country’s hotspot areas of unimproved source of drinking-water so that resource allocation and disease control can be optimized there. Therefore, the objective of this study is to map and identify hotspot areas of unimproved sources of drinking water in Ethiopia. Methods A population based cross-sectional study was conducted in Ethiopia from January 18 to June 27, 2016. Data were collected from 10,064 households using a pretested and structured questionnaire. A stratified two-stage cluster sampling was employed where the enumeration areas were primary sampling units and households were secondary sampling units. Systematic sampling with probability proportional to size was employed to select samples. Datasets were cleaned and entered into SaTScan and ArcGIS software for mapping and analysis. The Global Moran’s I and spatial scan statistical tests (Bernoulli model) were done to explore the presence of clustering in the study area and local spatial clusters (hotspots) of unimproved sources of drinking water using ArcGIS version 10.3 and Kuldorff’s SaTScan version 9.4 software, respectively. Results Unimproved sources of drinking water were spatially clustered in the study area (Moran’s I: 0.35, p < 0.05). A total of 143 significant clusters was identified. Of which, eight were most likely (primary) clusters and the other 135 were secondary clusters. The first spatial window which contains primary clusters was located in Amhara and Afar regions (LLR: 78.89, at p < 0.001). The other 33 spatial windows which contain secondary clusters were found in all regions, except Gambela region and Addis Abeba city administration (with a range of LLR: 10.09–78.89, p < 0.001). Conclusions This study allowed the identification of important non-random clusters and hotspots of unimproved sources of drinking water. Therefore, these results will be determinant to help decision makers in their geographical interventions to combat problems related to drinking water quality.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference27 articles.

1. Solution Finder. Unimproved Drinking Water Sources 2019 [cited 2019 14-Nov]. Available from: https://sswm.info/content/unimproved-drinking-water-sources.

2. World Health Organization. Drinking Water: The drinking water ladder. 2019.

3. Evans B, Bartram J, Hunter P, Williams AR, Geere J-A, Majuru B, et al. Public health and social benefits of at-house water supplies. Univ Leads. 2013:1–61.

4. Onda K, LoBuglio J, Bartram J. Global access to safe water: accounting for water quality and the resulting impact on MDG progress. Int J Environ Res Public Health. 2012;9(3):880–94.

5. Central Statistical Agency of Ethiopia. Drinking Water Quality in Ethiopia: Results from the 2016 Ethiopia Socioeconomic Survey 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3