Abstract
Abstract
Background
Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the β-1, 4-endoglucanase 17 (BEG) which hydrolyze β-1, 4 bonds from cellulose and hemicellulose, and (b) β-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit.
Results
A fragment of a β-1, 4-endoglucanase 17 (PgE17), and another of a β-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states.
Conclusions
A β-1, 4-endoglucanase 17, and β-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Padilla Ramírez JS, González Gaona E, Rodríguez Moreno VM, Cortés Penagos CJ, Sánchez Rico T (2014) Caracterización morfológica y bioquímica de frutos de guayaba, 1st edn. Sagarpa/Inifap, México
2. Padilla Ramírez JS, González Gaona E, de la Cruz MA P (2010) Nuevas variedades de guayaba (Psidium guajava L.), 1st edn. INIFAP-CIRNOC-Campo Experimental Pabellón, México
3. Cosgrove DJ (2016) Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476. https://doi.org/10.1093/jxb/erv511
4. Dolkar D, Bakshi P, Gupta M, Wali V, Kumar R, Hazarika T, Kher D (2017) Biochemical changes in guava (Psidium guajava) fruits during different stages of ripening. Indian J Agric Sci 87:257–260
5. Jain N, Dhawan K, Malhotra SP, Siddiqui S, Singh R (2001) Compositional and enzymatic changes in guava (Psidium guajava L.) fruits during ripening. Acta Physiol Plant 23(3):357–362. https://doi.org/10.1007/s11738-001-0044-7
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献