Abstract
Abstract
Background
Recent studies indicate that farmers are facing several challenges due to biotic and abiotic stresses like diseases, drought, cold, and soil salinity which are causing declined Citrus production. Thus, it is essential to improve these varieties which would be resistant against biotic and abiotic stresses as well as high yielding. The transformation of abiotic stress tolerant genes in Citrus species is essential for using areas affected by abiotic stresses. This study was aimed to improve resistance of Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck to abiotic stresses by transferring PsCBL and PsCIPK genes through Agrobacterium-mediated transformation.
Results
Abiotic stress tolerant PsCBL and PsCIPK genes isolated from Pisum sativum were transformed into two Citrus species, Citrus reticulata Blanco and Citrus sinensis (L.) Osbeck, through Agrobacterium-mediated transformation method. Mature seed-derived calli of two Species were infected with Agrobacterium tumefaciens LBA4404 harboring PsCBL and PsCIPK genes. The infected calli were co-cultured in dark condition and later on washed with antibiotic solution and transferred to selection medium. Preliminary resistant calli were recovered and regenerated to plantlets. Maximum regeneration rate was 61.11 ± 1.35% and 55.55 ± 1.03%, respectively. The genetic transformation was confirmed by performing β glucuronidase (GUS) assays and subsequent PCR amplification of the GUS gene. The transformation rates of the two cultivated species were higher than previous reports. Maximum transformation frequencies were found when bacterial OD600 was 0.5 and concentration of acetosyringone was 150 μM. In-vitro evaluation of drought and salt tolerance of transgenic plantlets were done, and transgenic plantlets showed better performance than the control plants.
Conclusions
The present study demonstrates that transformation of Citrus plants with PsCBL and PsCIPK genes result in improved abiotic stress tolerance.
Funder
Ministry of Science and Technology, Government of the People’s Republic of Bangladesh
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Kobayashi, S. 1994. Production of novel varieties through protoplast fusion in fruit trees. Research Journal of Food and Agriculture (Japan),.
2. Liu, Yong-Zhong, and Xiu-Xin Deng. 2007. Citrus breeding and genetics in China. The Asian and Australasian Journal of Plant Science and Biotechnology 1 (1): 23–28. http://www.globalsciencebooks.info/JournalsSup/images/Sample/AAJPSB_1(1)23-28.pdf.
3. Koltunow AM, Brennan P, Protopsaltis S, Nito N (2000) Regeneration of west indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Hortic 3535:81–92 https://doi.org/10.17660/ActaHortic.2000.535.8
4. Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular Plant 2(1):13–21 https://doi.org/10.1093/mp/ssn091
5. Sanders, Dale, Jérôme Pelloux, Colin Brownlee, and Jeffrey F Harper. 2002. Calcium at the crossroads of signaling calcium signals : a central paradigm in. Plant Cell, 401–417. https://doi.org/10.1105/tpc.002899.Calcium.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献