Abstract
AbstractBackgroundBryophytes, comprising of the second largest group in the plant kingdom, has attracted a great deal of attention in recent years due to its immense potential to produce biopharmaceuticals. But studies conducted to better understand their chemical composition are limited and scattered. In the present investigation, sequential optimization strategy, based on statistical experimental designs, was employed to enhance the production of α-glucosidase enzyme from mossHyophilla nymaniana(Fleish.) Menzel by using Taguchi methodology. L16 orthogonal array and five physical parameters including sugar, temperature, pH, rpm, nitrogen source were considered as key parameters for enzyme production. The optimal level of each parameter for maximum glucosidase production by the moss was determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors.ResultsBased on statistical analysis (ANOVA), the optimal combinations of the major constituents of media for maximal α-glucosidase production were evaluated as follows: dextrose 2% contributed maximum on α-glucosidase production followed by ammonium nitrate 1.5%, temperature 24 °C, pH 5.6, and RPM 120. Predicted results showed an enhanced glucosidase (53%) than the basal production medium.ConclusionThe present study highlighted that Taguchi design of experiments approach is better than the conventional optimization technique to determine the optimum level of each of the significant parameters that brings maximum enzyme production.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Van der Maarel MJEC, van der Veen B, Uitdehaag JCM et al (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155
2. Okuyama M, Saburi W, Mori H, Kimura A (2016) α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell Mol Life Sci 73:2727–2751
3. Chiba S (1988) Glucosidases. In: The Amylase Research Society of Japan (ed) Handbook of Amylases and Related Enzymes. Pergamon Press, Oxford, pp 104–105
4. Chiba S (1997) Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem 61(8):1233–1239
5. Macgregor AW (1987) Alpha-amylase, limit dextrinase, and alpha-glucosidase enzymes in barley and malt. Crit Rev Biotechnol 5(2):117–128
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献