Stress-induced expression of IPT gene in transgenic wheat reduces grain yield penalty under drought

Author:

Beznec AilinORCID,Faccio Paula,Miralles Daniel J.,Abeledo Leonor G.,Oneto Cecilia Decima,Garibotto María de Belén,Gonzalez Germán,Moreyra Federico,Elizondo Matías,Ruíz Mónica,Lewi Dalia,Blumwald Eduardo,Llorente Berta,Paleo Antonio Díaz,Bossio Ezequiel

Abstract

Abstract Background The heterologous expression of isopentenyl transferase (IPT) under the transcriptional control of the senescence-associated receptor-like kinase (SARK) promoter delayed cellular senescence and, through it, increased drought tolerance in plants. To evaluate the effect of pSARK::IPT expression in bread wheat, six independent transgenic events were obtained through the biolistic method and evaluated transgene expression, phenology, grain yield and physiological biomass components in plants grown under both drought and well-irrigating conditions. Experiments were performed at different levels: (i) pots and (ii) microplots inside a biosafety greenhouse, as well as under (iii) field conditions. Results Two transgenic events, called TR1 and TR4, outperformed the wild-type control under drought conditions. Transgenic plants showed higher yield under both greenhouse and field conditions, which was positively correlated to grain number (given by more spikes and grains per spike) than wild type. Interestingly, this yield advantage of the transgenic events was observed under both drought and well-watered conditions. Conclusions The results obtained allow us to conclude that the SARK promoter-regulated expression of the IPT gene in bread wheat not only reduced the yield penalty produced by water stress but also led to improved productivity under well-watered conditions.

Funder

Instituto Nacional de Tecnología Agropecuaria

Fondo para la Investigación Científica y Tecnológica

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3