The NDUFV2 gene silencing inhibits the proliferation of two drug-resistant cancer cell lines
-
Published:2022-04-26
Issue:1
Volume:20
Page:
-
ISSN:2090-5920
-
Container-title:Journal of Genetic Engineering and Biotechnology
-
language:en
-
Short-container-title:J Genet Eng Biotechnol
Author:
Liu Lingling,Wang Xunan,Li Yue,Ma Chengyao,Shi Yeye,Li Xiang,Chen Jianwei
Abstract
Abstract
Background
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. It is unlikely that there will ever be a single cure for cancer, but the development of molecular biology and cell biology has brought new options for cancer treatment. Our research group found in the preliminary experiments that AAs exhibited significant anti-tumor activity. Studies also showed that AAs exhibited varying degrees of downregulation effects on the expression of the NDUFV2 gene in the MCF-7/ADR and SMMC-7721/ADR cell lines. However, there is no relevant report on the role of this gene expression during the growth process of drug-resistant tumor cells. To address possible objections, this paper aims to investigate the effect of NDUFV2 gene silencing on the proliferation of the MCF-7/ADR and SMMC-7721/ADR cell lines.
Results
The interfering plasmids pPLK/GFP+Puro-NDUFV2 shRNA-3 and shRNA-2 inhibited the NDUFV2 gene and protein expression most significantly in MCF-7/ADR and SMMC-7721/ADR cells, respectively. NDUFV2 gene silencing could effectively inhibit the proliferation of both cell lines. The inhibition rates for MCF-7/ADR were 67.31%, 73.02%, and 69.76% at 24 h, 48 h, and 72 h, while that for SMMC-7721/ADR were 68.89%, 71.97%, and 74.40% at 24 h, 48 h, and 72 h, respectively. The inhibition rate of SMMC-7721/ADR cell proliferation was positively correlated with time.
Conclusions
Interference with the NDUFV2 gene may significantly inhibit the proliferation of MCF-7/ADR and SMMC-7721/ADR cells. This study is the pioneer to investigate that the NDUFV2 gene has been associated with the activity of inhibiting tumor cell proliferation, suggesting that the NDUFV2 gene may become a potential target for the study of tumor genesis and the development of antineoplastic drugs.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference22 articles.
1. Crofton J (1959) Chemotherapy of pulmonary tuberculosis. Br Med J 1(5138):1610–1614 2. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJM, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193 3. Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, Hyman DM, Solit DB, Robson ME, Baselga J, Arcila ME, Ladanyi M, Tallman MS, Levine RL, Berger MF (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21(3):374–382 4. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455(7213):679–683 5. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|