Molecular investigation of proteinase inhibitor (PI) gene in tomato plants induced by Meloidogyne species

Author:

Bozbuga Refik

Abstract

Abstract Background The plant parasitic nematode genus Meloidogyne parasitize almost all flowering crops. Plants respond with a variety of morphological and molecular mechanisms to reduce the effects of pathogens. Proteinase inhibitors (PI), a special group of plant proteins which are small proteins, involve in protective role in the plants attacked by microorganisms. Still, the plant response using PI against nematodes has not been well understood. Therefore, this study was aimed to determine the expression of proteinase inhibitor I (PI-I) gene subsequent the infection of M. incognita, M. javanica, and M. chitwoodi in tomato plants post nematode infections. Molecular methods were used to determine the PI gene expressions at different days post nematode infections in host tissues. Results Results revealed that the population of M. incognita species reached the highest level of nematode population followed by M. javanica and M. chitwoodi, respectively. All Meloidogyne species induced expression of PI-I gene reached at the utmost level at 3 days post infection (dpi) in host tissues. Relative gene expression level was sharply dropped at 7 dpi, 14 dpi, and 21 dpi in M. incognita induced gene expression in host tissues. Similar results were observed in host tissues after infection of M. javanica and M. chitwoodi. Conclusions The commonalities of plant response across a diverse Meloidogyne species interaction and the expression of PI gene may be related to plant defense system. Increased level of PI gene expressions in early infection days in host tissues induced by parasitic nematodes may share resemblances to the mechanisms of resistance on biotrophic interactions.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3