TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis

Author:

Biswas Anik,Nath Sudipta Deb,Ahsan Tamim,Hossain M. Monir,Akhteruzzaman Sharif,Sajib Abu Ashfaqur

Abstract

Abstract Background Arthrogryposis is a medical term used to describe congenital contractures which often affect multiple limbs. Distal arthrogryposis (DA) is one of the major categories of arthrogryposis that primarily affects the distal parts of the body, i.e., the hands and the legs. Although ten different types and several subtypes of DAs have been described, the genes associated with each of these DAs are yet to be characterized. Distal arthrogryposis type 10 (DA10) is a rare genetic disease, which is distinguished from the other arthrogryposis types by plantar flexion contractures resulting in toe-walking during infancy as well as variability in contractures of the hip, hamstring, elbow, wrist and finger joints with no ocular or neurological abnormalities. Symptoms of DA10 indicate impairment specifically in the musculoskeletal system. DA10 is still poorly studied. Aim The objective of this study was to identify the candidate gene for DA10 by scrutinizing the protein-protein interaction (PPI) networks using in silico tools. Results Among the genes that reside within the previously reported genomic coordinates (human chromosome assembly 38 or GRCh38 coordinates 2:179,700,000–188,500,000) of the causative agent of DA10, only TTN (the gene that codes for the protein Titin or TTN) follows the expression pattern similar to the other known DA associated genes and its expression is predominant in the skeletal and heart muscles. Titin also participates in biological pathways and processes relevant to arthrogryposes. TTN-related known skeletal muscle disorders follow the autosomal-dominant pattern of inheritance, which is a common characteristic of distal arthrogryposes as well. Conclusion Based on the findings of the analyses and their correlation with previous reports, TTN appears to be the candidate gene for DA10. Our attempt to discover a potential candidate gene may eventually lead to an understanding of disease mechanism and possible treatment strategies, as well as demonstrate the suitability of PPI in the search for candidate genes.

Funder

Ministry of Science and Technology, Government of the People’s Republic of Bangladesh

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3