Abstract
Abstract
Background
Plasmodium falciparum is the most deadly and leading cause of morbidity and mortality in Africa. About 90% of all malaria deaths in the world today occur in Sub-Saharan Africa especially in children aged < 5 years. In 2018, it was reported that there were 228 million malaria cases that resulted in 405,000 deaths from 91 countries. Currently, a fully effective and long-lasting preventive malaria vaccine is still elusive therefore more effort is needed to identify better effective vaccine candidates. The aim of this study was to identify and characterize hypothetical proteins as vaccine candidates derived from Plasmodium falciparum 3D7 genome by reverse vaccinology.
Results
Of the 23 selected hypothetical proteins, 5 were predicted on the extracellular localization by WoLFPSORTv.2.0 program and all the 5 had less than 2 transmembrane regions that were predicted by TMHMMv2.0 and HMMTOP programs at default settings. Two out of the five proteins lacked secretory signal peptides as predicted by SignalP program. Among the 5 extracellular proteins, 3 were predicted to be antigenic by VaxiJen (score ≥ 0.5) and had negative GRAVY values ranging from − 1.156 to − 0.440. B cell epitope prediction by ABCpred and BCpred programs revealed a total of 15 antigenic epitopes. A total of 13 cytotoxic T cells were predicted from the 3 proteins using CTLPred online server. Only 2 out of the 13 CTL were antigenic, immunogenic, non-allergenic, and non-toxic using VaxiJen, IEDB, AllergenFp, and Toxinpred servers respectively in that order. Five HTL peptides from XP_001351030.1 protein are predicted inducers of all the three cytokines. STRING protein–protein network analysis of HPs revealed XP_001350955.1 closely interacts with nucleoside diphosphate kinase (PF13-0349) at 0.704, XP_001351030.1 interacts with male development protein1 (Mdv-1) at 0.645, and XP_001351047.1 with an uncharacterized protein (MAL8P1.53) at 0.400.
Conclusion
Reverse vaccinology is a promising strategy for the screening and identification of antigenic antigens with potential capacity to elicit cellular and humoral immune responses against P. falciparum infection. In this study, potential vaccine candidates of Plasmodium falciparum were identified and screened using standard bioinformatics tools. The vaccine candidates contained antigenic and immunogenic epitopes which could be considered for novel and effective vaccine targets. However, we strongly recommend in vivo and in vitro experiments to validate their immunogenicity and protective efficacy to completely decipher the vaccine targets against malaria.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献