Abstract
Abstract
Background
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins.
Results
Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions.
Conclusions
From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献