In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate

Author:

Ghareb Heba El-Sayed,Ibrahim Shafik Darwish,Hegazi Ghada Abd El-MoneimORCID

Abstract

Abstract Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA3), 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) and RNA polymerase subunit (rpoC1) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (ITS). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference37 articles.

1. Omar K, Khafagi O, Elkholy MA (2013) Geomatics and plant conservation: GIS for best conservation planning. Saarbrücken: LAP LAMBERT Academic Publishing GmbH & Co. KG, p. 312

2. Serag MM, Moustafa AA, Qiqa SS (2018) Impact of climate change on surviving of Phlomis aurea as an endemic species growing in southern Sinai, Egypt. Catrina 17(1):29–35

3. Tӓckholm V (1974) Students’ flora of Egypt, 2nd edn. Cairo University, Egypt, Beirut

4. El-Hadidi MN, Batanouny KH, Fahmy AG (1991) The Egyptian plant red data book, vol 1, Trees and Shrubs. Department of Botany, Faculty of Science, Cairo University, Egypt

5. Omar KA, Elgamal I, Shalof A, Mehana S, Abdelbaset F (2017) Community-based 534 conservation of threatened plants Silene schimperiana, and Polygala sinaica in South Sinai, 535 Egypt. Final Project Report. The Ruffor Foundation, p. 92.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3