Author:
Ahmed Workia,Feyissa Tileye,Tesfaye Kassahun,Farrakh Sumaira
Abstract
Abstract
Background
Date palm tree (Phoenix dactylifera L.) is a perennial monocotyledonous plant belonging to the Arecaceae family, a special plant with extraordinary nature that gives eminent contributions in agricultural sustainability and huge socio-economic value in many countries of the world including Ethiopia. Evaluation of genetic diversity across date palms at DNA level is very important for breeding and conservation. The result of this study could help to design for genetic improvement and develop germplasm introduction programmes of date palms mainly in Ethiopia.
Results
In this study, 124 date palm genotypes were collected, and 10 polymorphic microsatellite markers were used. Among 10 microsatellites, MPdCIR085 and MPdCIR093 loci showed the highest value of observed and expected heterozygosity, maximum number of alleles, and highest polymorphic information content values. A total of 112 number of alleles were found, and the mean number of major allele frequency was 0.26, with numbers ranging from 0.155 (MPdCIR085) to 0.374 (MPdCIR016); effective number of alleles with a mean value of 6.61, private alleles ranged from 0.0 to 0.65; observed heterozygosity ranged from 0.355 to 0.726; expected heterozygosity varied from 0.669 to 0.906, polymorphic information content with a mean value of 0.809; fixation index individuals relative to subpopulations ranged from 0.028 for locus MPdCIR032 to 0.548 for locus MPdCIR025, while subpopulations relative to total population value ranged from − 0.007 (MPdCIR070) to 0.891 (MPdCIR015). All nine accesstions, neighbour-joining clustering analysis, based on dissimilarity coefficient values were grouped into five major categories; in population STRUCTURE analysis at highest K value, three groups were formed, whereas DAPC separated date palm genotypes into eight clusters using the first two linear discriminants. Principal coordinate analysis was explained, with a 17.33% total of variation in all populations. Generally, the result of this study revealed the presence of allele variations and high heterozygosity (> 0.7) in date palm genotypes.
Conclusions
Microsatellites (SSR) are one of the most preferable molecular markers for the study of genetic diversity and population structure of plants. In this study, we found the presence of genetic variations of date palm genotypes in Ethiopia; therefore, these genetic variations of date palms is important for crop improvement and conservation programmes; also, it will be used as sources of information to national and international genbanks.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Flowers JM, Hazzouri KM, Gros-Balthazard M, Mo Z, Koutroumpa K, Perrakis A, Ferrand S, Khierallah HSM, Fuller DQ, Aberlenc F, Fournaraki C, Purugganan MD (2019) Cross-species hybridization and the origin of North African date palms. PNAS 116(5):1651–1658
2. Mirbahar AA, Markhand GS, Khan S, Abul-Soad AA (2014) Molecular characterization of some Pakistani date palm (Phoenix dactylifera L.) cultivars by RAPD markers. Pak J Bot 46(2):619–625
3. Bodian A, Nachtigall M, Frese L, Elhoumaizi MA, Hasnaoui A, Ndir KN, Wehling P (2012) Genetic diversity analysis of date palm (Phoenix dactylifera L.) cultivars from Figuig oasis (Morocco) using SSR markers. Int J Sci Adv Tech 2(3):1–9
4. Karim K, Ines R, Souhayla M, Khayria H (2015) Morphological and molecular evaluation of the genetic diversity of Tunisian local date palm pollinators. Acad J Biotech 3(2):026–034. https://doi.org/10.15413/ajb.2015.0113 ISSN 2315-7747
5. Du B, Ma Y, Yanez-Serrano AM, Arab L, Fasbender L, Alfarraj S, Albasher G, Hedrich R, White PJ, Werner C, Rennenberg H (2020) Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding. New Phytol:1–12. https://doi.org/10.1111/nph.17123