In silico Structural, Functional and Phylogenetic Analyses of cellulase from Ruminococcus albus

Author:

Hoda AnilaORCID,Tafaj Myqerem,Sallaku Enkelejda

Abstract

Abstract Background Cellulose is the primary component of the plant cell wall and an important source of energy for the ruminant and microbial protein synthesis in the rumen. Cell wall content is digested by anaerobic fermentation activity mainly of bacteria belonging to species Fibrobacter succinogenes, Ruminicoccus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens. Bacteria belonging to the species Ruminococcus albus contain cellulosomes that enable it to adhere to and digest cellulose, and its genome encodes cellulases and hemicellulases. This study aimed to perform an in silico comparative characterization and functional analysis of cellulase from Ruminococcus albus to explore physicochemical properties and to estimate primary, secondary, and tertiary structure using various bio-computational tools. The protein sequences of cellulases belonging to 6 different Ruminococcus albus strains were retrieved using UniProt. In in silico composition of amino acids, basic physicochemical characteristics were analyzed using ProtParam and Protscale. Multiple sequence alignment of retrieved sequences was performed using Clustal Omega and the phylogenetic tree was constructed using Mega X software. Bioinformatics tools are used to better understand and determine the 3D structure of cellulase. The predicted model was refined by ModRefiner. Structure alignment between the best-predicted model and the template is applied to evaluate the similarity between structures. Results In this study are demonstrated several physicochemical characteristics of the cellulase enzyme. The instability index values indicate that the proteins are highly stable. Proteins are dominated by random coils and alpha helixes. The aliphatic index was higher than 71 providing information that the proteins are highly thermostable. No transmembrane domain was found in the protein, and the enzyme is extracellular and moderately acidic. The best tertiary structure model of the enzyme was obtained by the use of Raptor X, which was refined by ModRefiner. Raptor X suggested the 6Q1I_A as one of the best homologous templates for the predicted 3D protein structure. Ramachandran plot analysis showed that 90.1% of amino acid residues are within the most favored regions. Conclusions This study provides for the first time insights about the physicochemical properties, structure, and function of cellulase, from Ruminococcus albus, that will help for detection and identification of such enzyme in vivo or in silico.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3