Abstract
Abstract
Background
Translating the conventional scientific concepts into a new robust invention is a much needed one at a present scenario to develop some novel materials with intriguing properties. Particles in nanoscale exhibit superior activity than their bulk counterpart. This unique feature is intensively utilized in physical, chemical, and biological sectors. Each metal is holding unique optical properties that can be utilized to synthesize metallic nanoparticles. At present, versatile nanoparticles were synthesized through chemical and biological methods.
Main body of abstract
Metallic nanoparticles pose numerous scientific merits and have promising industrial applications. But concerning the pros and cons of metallic nanoparticle synthesis methods, researchers elevate to drive the synthesis process of nanoparticles through the utilization of plant resources as a substitute for use of chemicals and reagents under the theme of green chemistry. These synthesized nanoparticles exhibit superior antimicrobial, anticancer, larvicidal, leishmaniasis, wound healing, antioxidant, and as a sensor. Therefore, the utilization of such conceptualized nanoparticles in treating infectious and environmental applications is a warranted one.
Conclusion
Green chemistry is a keen prudence method, in which bioresources is used as a template for the synthesis of nanoparticles. Therefore, in this review, we exclusively update the context of plant-based metallic nanoparticle synthesis, characterization, and applications in detailed coverage. Hopefully, our review will be modernizing the recent trends going on in metallic nanoparticles synthesis for the blooming research fraternities.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Cited by
194 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献