Genetic diversity and volatile oil components variation in Achillea fragrantissima wild accessions and their regenerated genotypes

Author:

Badr AbdelfattahORCID,El-Shazly Hanaa H.,Sakr Mahmoud,Farid Mai M.ORCID,Hamouda Marwa,Elkhateeb Eman,Ahmad Hanan Syed

Abstract

Abstract Background Wild medicinal plants are suffering natural environmental stresses and habitat destruction. The genetic diversity evaluation of wild accessions and their in vitro raised genotypes using molecular markers, as well as the estimation of substances of pharmaceutical value in wild plants and their regenerated genotypes are convenient approaches to test the genetic fidelity of regenerated plants as a source of substances of pharmaceutical value. In this study, the genetic diversity of 12 accessions of the medicinal plant Achillea fragrantissima, representing five sites in the mountains of South Sinai, Egypt, were estimated by the inter simple sequence repeats (ISSR) fingerprinting and their volatile oil components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The same accessions were regenerated in vitro and the genetic diversity and volatile oil components of propagated genotypes were determined and compared to their wild parents. Results Clustering and principal component analyses indicated that the wild accessions and their regenerated genotypes were genetically differentiated, but the regenerated plants are relatively more diverse compared to their wild parents. However, genetic variation between wild accessions is inherited to their in vitro propagated genotypes indicating genotypic differentiation of the examined accessions. The number of volatile oil compounds in the wild A. fragrantissima accessions was 31 compounds while in the in vitro propagated plants only 24 compounds were detected. Four major compounds are common to both wild and regenerated plants; these are artemisia ketone, alpha-thujone, dodecane, and piperitone. Conclusions Genome profiling and essential oil components analysis showed variations in A. fragrantissima accessions from different populations. Genetic differences between wild and regenerated genotypes were analyzed and validated with the final conclusion that in vitro conditions elicited higher genetic variation that is associated with reduced amount and diversity in the essential oil components.

Funder

science and technology development fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference53 articles.

1. Ayyad M (2003) Case studies in the conservation of biodiversity: degradation and threats. J Arid Environ 54(1):165–182

2. Edwards R (2004) No remedy in sight for herbal ransack. New Sci 181(2429):10–11

3. Badr A et al (2014) Role of biotechnology in conservation and sustainable use of medicinal plants in the arid regions. Recent Prog Med Plants 39:317–333

4. Butiuc-Keul A, Farkas A, Cristea V (2016) Genetic stability assessment of in vitro plants by molecular markers. Stud Univ Babeş-Bolyai Biol 61(1):107–114

5. Cardoso JC, Gerald LTS, da Silva JAT (2018) Micropropagation in the twenty-first century. In: Plant cell culture protocols, pp 17–46

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3