Optimization of xylanase from Pseudomonas mohnii isolated from Simlipal Biosphere Reserve, Odisha, using response surface methodology

Author:

Paul Manish,Nayak Dipti Pravamayee,Thatoi HrudayanathORCID

Abstract

Abstract Background Xylanase has long been recognized as a widely used industrially important enzyme. There are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass. In this view, an efficient xylanolytic bacterial strain was isolated and screened from the soil sample of Simlipal Biosphere Reserve. Enzymatic assay for the xylanase activity was evidenced from the most potent bacterial strain, and the culture condition was optimized for obtaining the maximum enzyme activity. The most potent xylanolytic strain was also identified using biochemical and molecular methods. Results Nineteen xylanolytic bacteria (SXB1-SXB19) were isolated from Simlipal forest soil samples following dilution plate technique using corn cob xylan-enriched nutrient agar medium and screened for their xylanase-producing ability. Among these isolates, SXB19 showed maximum xylanolytic potential with a halozone size of 2.5 cm as evident in the formation of prominent yellow patches surrounding its growth in xylan-enriched nutrient agar plate. In unoptimized condition, SXB19 showed the highest enzymatic activity of 22.5 IU/ml among the 19 bacterial strains. In order to optimize the culture conditions for maximizing the xylanase production, Box-Behnken design of response surface methodology (RSM) was used. Four variables such as incubation time, pH, substrate (corn cob xylan) concentration, and temperature were considered for the RSM optimization study. From the results, it is evident that in an optimized condition of incubation time 36 h, pH 6.0, xylan concentration 0.5%, and temperature 42.5 °C, the enzyme activity reached a maximum of 152 IU/ml with nearly 6.75 times increase from the unoptimised condition. Besides, xylanase production from SXB19 was considerable in the presence of xylan followed by starch, nitrogen source such as urea followed by yeast extract, and mineral ion sources such as KCl followed by MgSO4 and ZnSO4. From different biochemical tests, 16S rRNA gene sequencing, and phylogenetic analysis, the bacterial strain SXB19 was identified as Pseudomonas mohnii. Conclusion The isolation of Pseudomonas mohnii, a potent xylanolytic bacterium from Simlipal, is a new report which opens up an opportunity for industrial production of xylanase for bioethanol production and other applications. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3