Abstract
Abstract
Background
Protoplasts (i.e., naked plant cells) can be used for in vitro manipulations and genetic improvement in cultivars with economic value. During the last decade, protoplast research in economic brown algae has been scarce, and it is usually hampered by the use of non-commercial enzymes or crude extracts for isolating protoplasts. Dictyopteris pacifica is part of a brown algal genus well known by its wide chemical diversity and biological properties. Scytosiphon lomentaria is an edible brown seaweed with antioxidant, antitumor, and antiviral properties. So far, there are no protoplast isolation protocols using commercial enzymes for these two economic brown algae. In this study, we obtained protoplasts from cultured samples of D. pacifica and S. lomentaria using commercially available enzymes. Additionally, we investigated the effects of Driselase inclusion and Ca-chelation pre-treatment on protoplast yields in order to optimize the conditions for protoplast preparations.
Results
Protoplasts were isolated from Dictyopteris pacifica and Scytosiphon lomentaria using the commercially available Cellulase Onozuka RS (1%) and Alginate lyase (4 U mL−1), and short incubation time (4 h). Driselase did not show significant effects on protoplast production in both species. Ca-chelation pre-treatment only increased the number of protoplasts in D. pacifica. Under optimal conditions, the protoplast yields from D. pacifica and S. lomentaria were 4.83 ± 2.08 and 74.64 ± 32.49 × 106 protoplasts g−1 fresh weight, respectively. The values obtained for S. lomentaria were 2–3 orders of magnitude higher than previously reported.
Conclusions
Our results show that high protoplast yields can be obtained from D. pacifica and S. lomentaria using a simple mixture of commercial enzymes (Cellulase RS and Alginate lyase) and short incubation time (4 h). This work also represents the first report of protoplast isolation in D. pacifica. The method proposed here can help to expand protoplast technology in more brown algal species.
Funder
National Research Foundation of Korea
National Marine Biodiversity Institute of Korea
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Kami S, Tsuchikado R, Nishida H (2019) DNA replication and cell enlargement of Enterococcus faecalis protoplasts. AIMS Microbiol 5(4):347–357. https://doi.org/10.3934/microbiol.2019.4.347
2. Turgeon BG, Condon B, Liu J, Zhang N (2010) Protoplast transformation of filamentous fungi. In: Sharon A (ed) Molecular and cell biology methods for fungi. Methods in Molecular Biology (Methods and Protocols), volume 638. Humana Press, Totowa
3. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23(2):131–171. https://doi.org/10.1016/j.biotechadv.2004.09.008
4. Reddy CRK, Gupta MK, Mantri VA, Bhavanath J (2008) Seaweed protoplast: status, biotechnological perspectives and needs. J Appl Phycol 20(5):619–632. https://doi.org/10.1007/s10811-007-9237-9
5. Burris KP, Dlugosz EM, Collins AG, Stewart CN, Lenaghan SC (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep 35(3):693–704. https://doi.org/10.1007/s00299-015-1913-7
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献