Abstract
Abstract
Background
Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and thus require a bio-based eco-friendly strategy for their depuration. The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal-polluted soil was monitored for 6 weeks in field moist microcosms consisting of CFMM-treated soil (FN4) and an untreated control (FN1). Hydrocarbon degradation was monitored using gas chromatography-flame ionization detector (GC-FID), and changes in microbial community structure were monitored using Kraken, while functional annotation of putative open reading frames (ORFs) was done using KEGG KofamKOALA and NCBI’s conserved domain database (CDD).
Results
Gas chromatographic analysis of hydrocarbon fractions revealed the removal of 84.02% and 82.38% aliphatic and 70.09% and 70.14% aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure. In the FN4 metagenome, 92.97% of the population belong to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%) and Firmicutes (11.20%), and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%), were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for aromatic hydrocarbons, benzoate, xylene, chlorocyclohexane/chlorobenzene, toluene and several others in FN1 metagenome. In the FN4 metagenome, only seven hydrocarbon degradation genes were detected.
Conclusion
This study revealed that though CFMM amendment slightly increases the rate of hydrocarbon degradation, it negatively impacts the structural and functional properties of the animal charcoal-polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration.
Publisher
Springer Science and Business Media LLC
Reference104 articles.
1. Akwetey WY, Eremong DC, Donkoh A (2013) Chemical and nutrient composition of cattle hide (“Welle”) using different processing methods. J Animal Sci Adv 3(4):176–180
2. Oko OJ, Okoye COB (2017) Quantification of smoke contributed PAHs in roasted cowhide (ponmo) from northern Nigeria. FUW Trends Sci Technol J 2(1A):55–59
3. Obayori OS, Salam LB, Oyetibo GO, Idowu M, Amund OO (2017) Biodegradation potentials of polyaromatic hydrocarbon (pyrene and phenanthrene) by Proteus mirabilis isolated from an animal charcoal polluted site. Biocatalysis Agric Biotechnol 12:78–84
4. DPR (1991) Guidelines and Standards for the Petroleum Industry in Nigeria. Department of Petroleum Resources, Lagos, Nigeria
5. Nguyen T, Hlangothi D, Martinez RA 3rd, Jacob D, Anthony K, Nance H, Saleh MA (2013) Charcoal burning as a source of polyaromatic hydrocarbons in waterpipe smoking. J Environ Sci Health B 48:1097–1102
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献