Variable predicted pathogenic mechanisms for novel MECP2 variants in RTT patients

Author:

Sharaf-Eldin Wessam E.ORCID,Issa Mahmoud Y.,Zaki Maha S.,Kilany Ayman,Fayez Alaaeldin G.

Abstract

Abstract Background Methyl CpG binding protein 2 (MeCP2) is essential for the normal function of mature neurons. Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT). Gene mutations have been identified throughout the gene and the mutation effect is mainly correlated with its type and location. Methods In this study, a series of in silico algorithms were applied for analyzing the functional consequences of 3 novel gene missense mutations (D121A, S359Y, and P403S) and a rarely reported one with suspicious effect (R133H) on RettBASE. Besides, a ROC curve analysis was performed to investigate the critical factors affecting variant pathogenicity. Results (1) The ROC curve analysis for a retrieved set of MeCP2 variants showed that physicochemical characters do not significantly affect variant pathogenicity; (2) PREM PDI tool revealed that both D121A and R133H mainly contribute to disease progression via reducing MeCP2 affinity to DNA; (3) GPS v5.0 software indicated that P403S may correlate with altered protein phosphorylation; however, no defective protein interaction has been already documented. (4) The applied computational algorithms failed to explore any informative pathogenic mechanism for the S359Y variant. Conclusion The conducted approach might provide an efficient prediction model for the effect of MECP2 variants that are located in MBD and CTD.

Funder

national research centre

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3