Abstract
AbstractOsteoarthritis (OA) has been defined as a chronic inflammatory joint disease characterized by progressive articular cartilage degeneration. Recently growing interest in regenerative medicine, using cell therapy and tissue engineering, where cellular components in combination with engineered scaffolds and bioactive materials were used to induce functional tissue regeneration. In the present study, nanofibrous scaffold based on chitosan (CS)/poly (vinyl alcohol) (PVA) were used to develop biologically functionalized biomaterial to mimic the extracellular matrix, allowing the human adipose tissue derived mesenchymal stem cells (ADSCs) to proliferate and differentiate to chondrogenic cells. The morphology of the nanofibrous mat was examined using field emission scanning electron microscope (FE/SEM). The characteristic functional groups and the nature of the chemical bonds between atoms were evaluated using Fourier transform infrared spectroscopy (FTIR) spectrum. Characterization of the seeded cells was morphologically evaluated by scanning electron microscopy and by flow cytometry for the expression of the stem cell surface markers. The differentiation potential was verified after chondrogenic induction by analyzing the expression of chondrogenic marker genes using real-time (RT PCR). Current study suggest significant potential for the use of ADSCs with the nanofibrous scaffolds in improving the osteoarthritis pathology.
Funder
National Research Centre (NRC), Cairo, Egypt
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology
Reference55 articles.
1. Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab. 2011;29(4):390–5.
2. Alhosseini SN, Moztarzadeh F, Mozafari M, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomedicine. 2012;7:25.
3. Alstrup T, Eijken M, Bohn AB, Møller B, Damsgaard TE. Isolation of adipose tissue–derived stem cells: enzymatic digestion in combination with mechanical distortion to increase adipose tissue–derived stem cell yield from human aspirated fat. Curr Protoc Stem Cell Biol. 2019;48(1):e68.
4. Baugé C, Boumédiene K. Use of adult stem cells for cartilage tissue engineering: current status and future developments. Stem Cells Int. 2015;2015:438026. https://doi.org/10.1155/2015/438026.
5. Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow-and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46(2):113–21.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献