Abstract
AbstractPreclinical models that can accurately predict the toxicity and efficacy of candidate drugs to human liver tissue are in urgent need. Human liver organoid (HLO) derived from human pluripotent stem cells offers a possible solution. Herein, we generated HLOs, and demonstrated the utility of these HLOs in modeling a diversity of phenotypes associated with drug-induced liver injury (DILI), including steatosis, fibrosis, and immune responses. Phenotypic changes in HLOs after treatment with tool compounds such as acetaminophen, fialuridine, methotrexate, or TAK-875 showed high concordance with human clinical data in drug safety testings. Moreover, HLOs were able to model liver fibrogenesis induced by TGFβ or LPS treatment. We further devised a high-content analysis system, and established a high-throughput anti-fibrosis drug screening system using HLOs. SD208 and Imatinib were identified that can significantly suppress fibrogenesis induced by TGFβ, LPS, or methotrexate. Taken together, our studies demonstrated the potential applications of HLOs in drug safety testing and anti-fibrotic drug screening.
Funder
Shanghai Science and Technology Commission
The Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Youth Innovation Promotion Association of CAS
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献