METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium

Author:

Huang Meimei,Wang Xiaodan,Zhang Mengxian,Liu YuanORCID,Chen Ye-GuangORCID

Abstract

AbstractIntestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m6A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m6A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Jiangxi Province

Beijing Science and Technology Planning Project

Shenzhen Medical Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3