Abstract
Abstract
Background
Ineffective triggering is frequent during pressure support ventilation (PSV) and may persist despite ventilator adjustment, leading to refractory asynchrony. We aimed to assess the effect of proportional assist ventilation with load-adjustable gain factors (PAV+) on the occurrence of refractory ineffective triggering.
Design
Observational assessment followed by prospective cross-over physiological study.
Setting
Academic medical ICU.
Patients
Ineffective triggering was detected during PSV by a twice-daily inspection of the ventilator’s screen. The impact of pressure support level (PSL) adjustments on the occurrence of asynchrony was recorded. Patients experiencing refractory ineffective triggering, defined as persisting asynchrony at the lowest tolerated PSL, were included in the physiological study.
Interventions
Physiological study: Flow, airway, and esophageal pressures were continuously recorded during 10 min under PSV with the lowest tolerated PSL, and then under PAV+ with the gain adjusted to target a muscle pressure between 5 and 10 cmH2O.
Measurements
Primary endpoint was the comparison of asynchrony index between PSV and PAV+ after PSL and gain adjustments.
Results
Among 36 patients identified having ineffective triggering under PSV, 21 (58%) exhibited refractory ineffective triggering. The lowest tolerated PSL was higher in patients with refractory asynchrony as compared to patients with non-refractory ineffective triggering. Twelve out of the 21 patients with refractory ineffective triggering were included in the physiological study. The median lowest tolerated PSL was 17 cmH2O [12–18] with a PEEP of 7 cmH2O [5–8] and FiO2 of 40% [39–42]. The median gain during PAV+ was 73% [65–80]. The asynchrony index was significantly lower during PAV+ than PSV (2.7% [1.0–5.4] vs. 22.7% [10.3–40.1], p < 0.001) and consistently decreased in every patient with PAV+. Esophageal pressure–time product (PTPes) did not significantly differ between the two modes (107 cmH2O/s/min [79–131] under PSV vs. 149 cmH2O/s/min [129–170] under PAV+, p = 0.092), but the proportion of PTPes lost in ineffective triggering was significantly lower with PAV+ (2 cmH2O/s/min [1–6] vs. 8 cmH2O/s/min [3–30], p = 0.012).
Conclusions
Among patients with ineffective triggering under PSV, PSL adjustment failed to eliminate asynchrony in 58% of them (21 of 36 patients). In these patients with refractory ineffective triggering, switching from PSV to PAV+ significantly reduced or even suppressed the incidence of asynchrony.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference44 articles.
1. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.
2. Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41.
3. de Wit M, Miller KB, Green DA, et al. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–5.
4. Vaporidi K, Babalis D, Chytas A, et al. Clusters of ineffective efforts during mechanical ventilation: impact on outcome. Intensive Care Med. 2017;43:184–91.
5. Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163:1059–63.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献