SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest

Author:

Benghanem Sarah,Nguyen Lee S.,Gavaret Martine,Mira Jean-Paul,Pène Frédéric,Charpentier Julien,Marchi Angela,Cariou Alain

Abstract

Abstract Background To assess in comatose patients after cardiac arrest (CA) if amplitudes of two somatosensory evoked potentials (SSEP) responses, namely, N20-baseline (N20-b) and N20–P25, are predictive of neurological outcome. Methods Monocentric prospective study in a tertiary cardiac center between Nov 2019 and July-2021. All patients comatose at 72 h after CA with at least one SSEP recorded were included. The N20-b and N20–P25 amplitudes were automatically measured in microvolts (µV), along with other recommended prognostic markers (status myoclonus, neuron-specific enolase levels at 2 and 3 days, and EEG pattern). We assessed the predictive value of SSEP for neurologic outcome using the best Cerebral Performance Categories (CPC1 or 2 as good outcome) at 3 months (main endpoint) and 6 months (secondary endpoint). Specificity and sensitivity of different thresholds of SSEP amplitudes, alone or in combination with other prognostic markers, were calculated. Results Among 82 patients, a poor outcome (CPC 3–5) was observed in 78% of patients at 3 months. The median time to SSEP recording was 3(2–4) days after CA, with a pattern “bilaterally absent” in 19 patients, “unilaterally present” in 4, and “bilaterally present” in 59 patients. The median N20-b amplitudes were different between patients with poor and good outcomes, i.e., 0.93 [0–2.05]µV vs. 1.56 [1.24–2.75]µV, respectively (p < 0.0001), as the median N20–P25 amplitudes (0.57 [0–1.43]µV in poor outcome vs. 2.64 [1.39–3.80]µV in good outcome patients p < 0.0001). An N20-b > 2 µV predicted good outcome with a specificity of 73% and a moderate sensitivity of 39%, although an N20–P25 > 3.2 µV was 93% specific and only 30% sensitive. A low voltage N20-b < 0.88 µV and N20–P25 < 1 µV predicted poor outcome with a high specificity (sp = 94% and 93%, respectively) and a moderate sensitivity (se = 50% and 66%). Association of “bilaterally absent or low voltage SSEP” patterns increased the sensitivity significantly as compared to “bilaterally absent” SSEP alone (se = 58 vs. 30%, p = 0.002) for prediction of poor outcome. Conclusion In comatose patient after CA, both N20-b and N20–P25 amplitudes could predict both good and poor outcomes with high specificity but low to moderate sensitivity. Our results suggest that caution is needed regarding SSEP amplitudes in clinical routine, and that these indicators should be used in a multimodal approach for prognostication after cardiac arrest.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Reference31 articles.

1. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80. https://doi.org/10.1007/s00134-013-3043-4.

2. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369–421. https://doi.org/10.1007/s00134-021-06368-4.

3. Soar J, Maconochie I, Wyckoff MH, Olasveengen TM, Singletary EM, Greif R, et al. International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Circulation. 2019;2019:140. https://doi.org/10.1161/CIR.0000000000000734.

4. André-Obadia N, Zyss J, Gavaret M, Lefaucheur J-P, Azabou E, Boulogne S, et al. Recommendations for the use of electroencephalography and evoked potentials in comatose patients. Neurophysiol Clin. 2018;48:143–69. https://doi.org/10.1016/j.neucli.2018.05.038.

5. Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020;131:2736–65. https://doi.org/10.1016/j.clinph.2020.07.015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3