Photoplethysmographic determination of the respiratory rate in acutely ill patients: validation of a new algorithm and implementation into a biomedical device

Author:

L’Her Erwan,N’Guyen Quang-Thang,Pateau Victoire,Bodenes Laetitia,Lellouche François

Abstract

Abstract Background Respiratory rate is among the first vital signs to change in deteriorating patients. The aims of this study were to evaluate the accuracy of respiratory rate measurements using a specifically dedicated reflection-mode photoplethysmographic signal analysis in a pathological condition (PPG-RR) and to validate its implementation within medical devices. Methods This study is derived from a data mining project, including all consecutive patients admitted to our ICU (ReaSTOC study, ClinicalTrials.gov identifier: NCT02893462). During the evaluation phase of the algorithm, PPG-RR calculations were retrospectively performed on PPG waveforms extracted from the data warehouse and compared with RR reference values. During the prospective phase, PPG-RR calculations were automatically and continuously performed using a dedicated device (FreeO2, Oxynov, Québec, QC, Canada). In all phases, reference RR was measured continuously using electrical thoracic impedance and chronometric evaluation (Manual-RR) over a 30-s period. Results In total, 201 ICU patients’ recordings (SAPS II 51.7 ± 34.6) were analysed during the retrospective evaluation phase, most of them being admitted for a respiratory failure and requiring invasive mechanical ventilation. PPG-RR determination was available in 95.5% cases, similar to reference (22 ± 4 vs. 22 ± 5 c/min, respectively; p = 1), and well correlated with reference values (R = 0.952; p < 0.0001), with a low bias (0.1 b/min) and deviation (± 3.5 b/min). Prospective estimation of the PPG-RR on 30 ICU patients’ recordings was well correlated with the reference method (Manual-RR; r = 0.78; p < 0.001). Comparison of the methods depicted a low bias (0.5 b/min) and acceptable deviation (< ± 5.5 b/min). Conclusion According to our results, PPG-RR is an interesting approach for ventilation monitoring, as this technique would make simultaneous monitoring of respiratory rate and arterial oxygen saturation possible, thus minimizing the number of sensors attached to the patient. Trial registry number ClinicalTrials.gov identifier NCT02893462

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3