Author:
L’Her Erwan,N’Guyen Quang-Thang,Pateau Victoire,Bodenes Laetitia,Lellouche François
Abstract
Abstract
Background
Respiratory rate is among the first vital signs to change in deteriorating patients. The aims of this study were to evaluate the accuracy of respiratory rate measurements using a specifically dedicated reflection-mode photoplethysmographic signal analysis in a pathological condition (PPG-RR) and to validate its implementation within medical devices.
Methods
This study is derived from a data mining project, including all consecutive patients admitted to our ICU (ReaSTOC study, ClinicalTrials.gov identifier: NCT02893462). During the evaluation phase of the algorithm, PPG-RR calculations were retrospectively performed on PPG waveforms extracted from the data warehouse and compared with RR reference values. During the prospective phase, PPG-RR calculations were automatically and continuously performed using a dedicated device (FreeO2, Oxynov, Québec, QC, Canada). In all phases, reference RR was measured continuously using electrical thoracic impedance and chronometric evaluation (Manual-RR) over a 30-s period.
Results
In total, 201 ICU patients’ recordings (SAPS II 51.7 ± 34.6) were analysed during the retrospective evaluation phase, most of them being admitted for a respiratory failure and requiring invasive mechanical ventilation. PPG-RR determination was available in 95.5% cases, similar to reference (22 ± 4 vs. 22 ± 5 c/min, respectively; p = 1), and well correlated with reference values (R = 0.952; p < 0.0001), with a low bias (0.1 b/min) and deviation (± 3.5 b/min). Prospective estimation of the PPG-RR on 30 ICU patients’ recordings was well correlated with the reference method (Manual-RR; r = 0.78; p < 0.001). Comparison of the methods depicted a low bias (0.5 b/min) and acceptable deviation (< ± 5.5 b/min).
Conclusion
According to our results, PPG-RR is an interesting approach for ventilation monitoring, as this technique would make simultaneous monitoring of respiratory rate and arterial oxygen saturation possible, thus minimizing the number of sensors attached to the patient.
Trial registry number ClinicalTrials.gov identifier NCT02893462
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference35 articles.
1. Churpek MM, Yuen TC, Huber MT, Park SY, Hall JB, Edelson DP. Predicting cardiac arrest on the wards: a nested case-control study. Chest. 2012;141:1170–6.
2. Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A. Respiratory rate: the neglected vital sign. MJA. 2008;188:657–9.
3. Mochizuki K, Shintani R, Mori K, Sato T, Sakaguchi O, Takeshige K, Nitta K, Imamura H. Importance of respiratory rate for the prediction of clinical deterioration after emergency department discharge: a single-center, case-control study. Acute Med Surg. 2016;4:172–8.
4. Lovett PB, Buchwald JM, Stürmann K, Bijur P. The vexatious vital: neither clinical measurements by nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage. Ann Emerg Med. 2005;45:68–76.
5. Aoyagi T, Miyasaka K. Pulse oximetry: its invention, contribution to medicine, and future task. Anesth Analg. 2002;94:S1–3.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献