Target arterial PO2 according to the underlying pathology: a mini-review of the available data in mechanically ventilated patients

Author:

Demiselle Julien,Calzia Enrico,Hartmann Clair,Messerer David Alexander Christian,Asfar Pierre,Radermacher Peter,Datzmann Thomas

Abstract

AbstractThere is an ongoing discussion whether hyperoxia, i.e. ventilation with high inspiratory O2 concentrations (FIO2), and the consecutive hyperoxaemia, i.e. supraphysiological arterial O2 tensions (PaO2), have a place during the acute management of circulatory shock. This concept is based on experimental evidence that hyperoxaemia may contribute to the compensation of the imbalance between O2 supply and requirements. However, despite still being common practice, its use is limited due to possible oxygen toxicity resulting from the increased formation of reactive oxygen species (ROS) limits, especially under conditions of ischaemia/reperfusion. Several studies have reported that there is a U-shaped relation between PaO2 and mortality/morbidity in ICU patients. Interestingly, these mostly retrospective studies found that the lowest mortality coincided with PaO2 ~ 150 mmHg during the first 24 h of ICU stay, i.e. supraphysiological PaO2 levels. Most of the recent large-scale retrospective analyses studied general ICU populations, but there are major differences according to the underlying pathology studied as well as whether medical or surgical patients are concerned. Therefore, as far as possible from the data reported, we focus on the need of mechanical ventilation as well as the distinction between the absence or presence of circulatory shock. There seems to be no ideal target PaO2 except for avoiding prolonged exposure (> 24 h) to either hypoxaemia (PaO2 < 55–60 mmHg) or supraphysiological (PaO2 > 100 mmHg). Moreover, the need for mechanical ventilation, absence or presence of circulatory shock and/or the aetiology of tissue dysoxia, i.e. whether it is mainly due to impaired macro- and/or microcirculatory O2 transport and/or disturbed cellular O2 utilization, may determine whether any degree of hyperoxaemia causes deleterious side effects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3