Respiratory mechanics and gas exchanges in the early course of COVID-19 ARDS: a hypothesis-generating study

Author:

Diehl J.-L.ORCID,Peron N.,Chocron R.,Debuc B.,Guerot E.,Hauw-Berlemont C.,Hermann B.,Augy J. L.,Younan R.,Novara A.,Langlais J.,Khider L.,Gendron N.,Goudot G.,Fagon J.-F.,Mirault T.,Smadja D. M.

Abstract

Abstract Rationale COVID-19 ARDS could differ from typical forms of the syndrome. Objective Pulmonary microvascular injury and thrombosis are increasingly reported as constitutive features of COVID-19 respiratory failure. Our aim was to study pulmonary mechanics and gas exchanges in COVID-2019 ARDS patients studied early after initiating protective invasive mechanical ventilation, seeking after corresponding pathophysiological and biological characteristics. Methods Between March 22 and March 30, 2020 respiratory mechanics, gas exchanges, circulating endothelial cells (CEC) as markers of endothelial damage, and D-dimers were studied in 22 moderate-to-severe COVID-19 ARDS patients, 1 [1–4] day after intubation (median [IQR]). Measurements and main results Thirteen moderate and 9 severe COVID-19 ARDS patients were studied after initiation of high PEEP protective mechanical ventilation. We observed moderately decreased respiratory system compliance: 39.5 [33.1–44.7] mL/cmH2O and end-expiratory lung volume: 2100 [1721–2434] mL. Gas exchanges were characterized by hypercapnia 55 [44–62] mmHg, high physiological dead-space (VD/VT): 75 [69–85.5] % and ventilatory ratio (VR): 2.9 [2.2–3.4]. VD/VT and VR were significantly correlated: r2 = 0.24, p = 0.014. No pulmonary embolism was suspected at the time of measurements. CECs and D-dimers were elevated as compared to normal values: 24 [12–46] cells per mL and 1483 [999–2217] ng/mL, respectively. Conclusions We observed early in the course of COVID-19 ARDS high VD/VT in association with biological markers of endothelial damage and thrombosis. High VD/VT can be explained by high PEEP settings and added instrumental dead space, with a possible associated role of COVID-19-triggered pulmonary microvascular endothelial damage and microthrombotic process.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3