Accuracy of P0.1 measurements performed by ICU ventilators: a bench study

Author:

Beloncle FrançoisORCID,Piquilloud Lise,Olivier Pierre-Yves,Vuillermoz Alice,Yvin Elise,Mercat Alain,Richard Jean-Christophe

Abstract

Abstract Background Occlusion pressure at 100 ms (P0.1), defined as the negative pressure measured 100 ms after the initiation of an inspiratory effort performed against a closed respiratory circuit, has been shown to be well correlated with central respiratory drive and respiratory effort. Automated P0.1 measurement is available on modern ventilators. However, the reliability of this measurement has never been studied. This bench study aimed at assessing the accuracy of P0.1 measurements automatically performed by different ICU ventilators. Methods Five ventilators set in pressure support mode were tested using a two-chamber test lung model simulating spontaneous breathing. P0.1 automatically displayed on the ventilator screen (P0.1vent) was recorded at three levels of simulated inspiratory effort corresponding to P0.1 of 2.5, 5 and 10 cm H2O measured directly at the test lung and considered as the reference values of P0.1 (P0.1ref). The pressure drop after 100 ms was measured offline on the airway pressure–time curves recorded during the automated P0.1 measurements (P0.1aw). P0.1vent was compared to P0.1ref and to P0.1aw. To assess the potential impact of the circuit length, P0.1 were also measured with circuits of different lengths (P0.1circuit). Results Variations of P0.1vent correlated well with variations of P0.1ref. Overall, P0.1vent underestimated P0.1ref except for the Löwenstein® ventilator at P0.1ref 2.5 cm H2O and for the Getinge group® ventilator at P0.1ref 10 cm H2O. The agreement between P0.1vent and P0.1ref assessed with the Bland–Altman method gave a mean bias of − 1.3 cm H2O (limits of agreement: 1 and − 3.7 cm H2O). Analysis of airway pressure–time and flow–time curves showed that all the tested ventilators except the Getinge group® ventilator performed an occlusion of at least 100 ms to measure P0.1. The agreement between P0.1vent and P0.1aw assessed with the Bland–Altman method gave a mean bias of 0.5 cm H2O (limits of agreement: 2.4 and − 1.4 cm H2O). The circuit’s length impacted P0.1 measurements’ values. A longer circuit was associated with lower P0.1circuit values. Conclusion P0.1vent relative changes are well correlated to P0.1ref changes in all the tested ventilators. Accuracy of absolute values of P0.1vent varies according to the ventilator model. Overall, P0.1vent underestimates P0.1ref. The length of the circuit may partially explain P0.1vent underestimation.

Funder

Angers University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3