Author:
Huh Yang Hoon,Kweon Hee-Seok,Kitazawa Toshio
Abstract
Abstract
Background
Chronic treatment with fetal bovine serum (FBS) causes gradual vasoconstriction, vascular wall thickening, and contractility reduction in organ-cultured vascular tissues. We have previously demonstrated that Rho-associated kinase (ROCK) inhibitors prevent the functional alterations of small arteries in response to the FBS treatment. Here, we tested a further hypothesis that the chronic inhibition of ROCK has a protective effect on FBS-induced structural alterations.
Methods
To verify the new hypothesis, the rabbit mesenteric arterial rings were cultured in FBS-supplemented culture medium with or without Y-27632, a reversible ROCK inhibitor and then western blot, immunohistochemistry, apoptosis assay, and electron microscopy were performed using organ-cultured arterial rings.
Results
Chronic treatment with Y-27632 maintained the arterial diameter by preventing FBS-induced gradual arterial constriction during organ culture. Y-27632 also reduced the apoptosis and the loss of contractile myosin and actin filaments of smooth muscle cells. In addition, Y-27632 protected the morphological integrity between the endothelial cell layer and smooth muscle cell layer by preventing endothelial cell detachment and platelet endothelial cell adhesion molecule (PECAM) expression decrement.
Conclusions
Chronic ROCK inhibition provides protective effects against FBS-stimulated structural in addition to functional alterations of vascular smooth muscle cells and endothelial cells. These results strongly suggest that the RhoA/ROCK signaling is crucial for maintaining the structural and functional phenotypes of vasculature, and hence, chronic ROCK inhibition may provide protective effects on excessive growth factor-related vascular diseases including hypertension and atherosclerosis.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献