Author:
Shamekhi Amiri Fateme,Rostami Zohreh
Abstract
Abstract
Background/aims
Familial juvenile hereditary nephropathy (FJHN) is characterized by hyperuricemia due to severely impaired urinary excretion of urate. Hereditary renal hypouricemia is an inborn error of membrane transport. Because studies of inherited tubulopathy is rare, prevalence and diagnosis of these inherited tubulopathy increase with genetic testing.The aim of this study is to investigate prevalence of clinical features, biochemical profiles, and genetic analysis of patients with changes in serum uric acid levels in inherited tubulopathy.
Main body
The paper has written based on searching PubMed and Google Scholar to identify potentially relevant articles or abstracts. In this retrospective study, a total 65 patients with changes of serum uric acid levels and kidney dysfunction were investigated. Clinical features, laboratory data at initial presentation, management, and outcomes were collected. Forty studies (65 participants) included in this review. The mean ± SD of age of study patients in inherited tubulointerstitial kidney disease was 25.29 ± 14.69 years. Mean ± SD age of patients at time of diagnosis in inherited renal hypouricemia was 18.83 ± 10.59 years. Correlation between exon region in mutated UMOD, SLC22A12, and SLC2A9 genes and serum uric acid levels were assessed and revealed significant statistical correlation between exon region of SLC2A9 mutation and serum uric acid levels. Prevalence of progression to end-stage kidney disease in patients with inherited tubulointerstitial kidney disease and inherited renal hypouricemia were assessed 20% and 2.5%, respectively. There was nephrolithiasis in two patients (2/25, 8%) with inherited renal hypouricemia.
Conclusions
This study shows that UMOD and SLC22A12 gene mutations were responsible for majority of autosomal-dominant tubulointerstitial kidney disease and inherited renal hypouricemia, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Transplantation,Urology,Nephrology
Reference64 articles.
1. Wright AF, Rudan I, Hastie ND, Campbell H. A complexity of urate transporters. Kidney Int. 2010;78(5):446–52.
2. Sharaf El Din UAAA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. 2017;8(5):537–48.
3. Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RL, et al. Physiology of hyperuricemia and urate-lowering treatments. Front Med. 2018;5(160):1–28.
4. Gast C, Marinaki A, Arenas-Hernandez M, Campbell S, Seaby EG, Pengelly RJ, et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19(301):1–11.
5. Kang D, Ha SK. Uric acid puzzle: dual role as anti-oxidant and pro-oxidant. Electrolyte Blood Press. 2014;12(1):1–6.