Author:
Mizumasa Tohru, ,Honda Kazuho,Aoki Shigehisa,Hamada Chieko,Miyazaki Masanobu,Ito Yasuhiko,Tanno Yudo,Nakano Toshiaki,Nakayama Masaaki
Abstract
AbstractProlonged peritoneal dialysis (PD) is responsible for progressive morphological changes such as deterioration of the peritoneal membrane. These changes increase the risk of encapsulating peritoneal sclerosis (EPS). Histological assessments of peritoneal membrane biopsy samples are fundamental for the evaluation of the peritoneal damage caused by PD. For evaluating serial morphological changes induced in the peritoneum by PD, we recommend to perform peritoneal biopsy examinations not only after the cessation of PD but also before performing PD. At the time of PD catheter insertion, the parietal peritoneum (1.5 × 1.5 cm) and rectus abdominal muscle posterior sheath is sampled at a point 3 cm below the PD catheter insertion site. Furthermore, at the time of PD catheter removal, the parietal peritoneum is sampled at a point 3 cm apart from the PD catheter insertion site to avoid artifacts. The peritoneum should be evaluated to detect mesothelial cell denudation, acellular sclerotic changes and thickness of the submesothelial connective tissue, vasculopathy of the post-capillary venules, vascular angiogenesis, and new encapsulating membrane. The method presented herein allows the minimization of surgical invasiveness and artifacts of the specimens and safe performance of peritoneal biopsy examinations. Morphological evaluation of the peritoneum involving an appropriate biopsy strategy, in conjunction with functional markers of deterioration, such as peritoneal permeability or cytokine levels, is a useful approach for examining peritoneal damage and predicting the prognosis of PD patients, especially the onset of EPS.
Publisher
Springer Science and Business Media LLC
Subject
Transplantation,Urology,Nephrology
Reference23 articles.
1. Williams JD, Craig KJ, Topley N, von Ruhland C, Fallon M, Newman GR, et al. Morphologic Changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.
2. Honda K, Hamada C, Nakayama M, Miyazaki M, Sherif AM, Harada T, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol. 2008;3:720–8.
3. Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, et al. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs. 2015;18:243–50.
4. Nomoto Y, Kawaguchi Y, Kubo H, Hirano H, Sakai S, Kurokawa K. Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report of the Japanese sclerosing encapsulating peritonitis study group. Am J Kidney Dis. 1996;28:420–7.
5. Kawanishi H, Kawaguchi Y, Fukui H, Hara S, Imada A, Kubo H, et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am J Kidney Dis. 2004;44:729–37.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献