CRRT circuit venous air chamber design and intra-chamber flow dynamics: a computational fluid dynamics study

Author:

Shimizu Kota,Yamada Toru,Moriyama KazuhiroORCID,Kato China,Kuriyama Naohide,Hara Yoshitaka,Kawaji Takahiro,Komatsu Satoshi,Morinishi Yohei,Nishida Osamu,Nakamura Tomoyuki

Abstract

Abstract Background Venous air trap chamber designs vary considerably to suit specific continuous renal replacement therapy circuits, with key variables including inflow design and filter presence. Nevertheless, intrachamber flow irregularities do occur and can promote blood coagulation. Therefore, this study employed computational fluid dynamics (CFD) simulations to better understand how venous air trap chamber designs affect flow. Methods The flow within a venous air trap chamber was analyzed through numerical calculations based on CFD, utilizing large eddy simulation. The working fluid was a 33% glycerin solution, and the flow rate was set at 150 ml/min. A model of a venous air trap chamber with a volume of 15 ml served as the computational domain. Calculations were performed for four conditions: horizontal inflow with and without a filter, and vertical inflow with and without a filter. Streamline plots and velocity contour plots were generated to visualize the flow. Results In the horizontal inflow chamber, irrespective of filter presence, ultimately the working fluid exhibited a downstream vortex flow along the chamber walls, dissipating as it progressed, and being faster near the walls than in the chamber center. In the presence of a filter, the working fluid flowed uniformly toward the outlet, while in the absence of a filter the flow became turbulent before reaching the outlet. These observations indicate a streamlining effect of the filter. In the vertical inflow chamber, irrespective of filter presence, the working fluid flowed vertically from the inlet into the main flow direction. Part of the working fluid bounced back at the chamber bottom, underwent upward and downward movements, and eventually flowed out through the outlet. Stagnation was observed at the top of the chamber. Without a filter, more working fluid bounced back from the bottom of the chamber. Conclusions CFD analysis estimated that the flow in a venous air trap chamber is affected by inflow method and filter presence. The “horizontal inflow chamber with filter” was identified as the design creating a smooth and uninterrupted flow throughout the chamber.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3