Prediction of end-dialysis serum sodium concentration in severely hyponatremic kidney failure patients undergoing conventional hemodialysis using sodium kinetic equation

Author:

Gharib Mohamed SaryORCID

Abstract

Abstract Background and Objectives Conventional hemodialysis (HD) for kidney failure patients with severe hyponatremia may be complicated by rapid correction of hyponatremia, which increases the risk of osmotic demyelination syndrome. A simple sodium kinetic equation was effective in prediction of end-dialysis serum Na+ in severely hyponatremic kidney failure patient treated with continuous venovenous hemofiltration, but was not tested in conventional HD. The aim of this study was to assess the validity of this equation when used in conventional HD. Methods Twenty conventional HD sessions were delivered to 12 kidney failure patients with severe hyponatremia (serum Na+  < 120 mEq/L). The target change in serum Na+ was 4 mEq/L. The DNa.t/V that obtained this change was predetermined according to the sodium kinetic equation and monitored in real time by online clearance monitoring software embedded in dialysis machine. The dialysis session was terminated once the target DNa.t/V was achieved. Results The mean observed and predicted serum Na+ were 119.80 ± 3.42 mEq/L and 119.45 ± 3.12 mEq/L, respectively. Bland–Altman plot analysis revealed a mean difference ± SD of 0.33 ± 1.26 mEq/L, and 95% limits of agreement of − 2.13 to 2.83. The imprecision in prediction of end-dialysis serum Na+ was 2.52 mEq/L. The small difference and clinically insignificant 95% limits of agreement indicate a good agreement between the observed and predicted serum Na+. Conclusion The sodium kinetic equation was effective in prediction of end-dialysis serum Na+ in kidney failure patients with severe hyponatremia.

Publisher

Springer Science and Business Media LLC

Subject

Transplantation,Urology,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3