Effect of hollow fiber diameter and membrane surface area of polymethyl methacrylate membrane on filter lifetime

Author:

Kurihara Yoshitaka,Kokubo KenichiORCID,Kobayashi Yuta,Ushiroda Yosuke,Ueki Shunichi,Tsukao Hiroshi,Kobayashi Kozue,Kubota Masaru,Kobayashi Hirosuke

Abstract

Abstract Background When polymethyl methacrylate (PMMA) membranes are used in continuous renal replacement therapy, especially in patients with high cytokine levels, inflammatory cytokines and other substances are removed by the adsorption effect. However, such filters are prone to clogging, and the filter lifetime can be short. This study investigated the effects of hollow fiber inner diameter and membrane area on filter lifetime and protein removal performance using an in vitro continuous hemofiltration (CHF) experimental model with porcine blood. Methods Three types of filters with different hollow fiber inner diameters and membrane areas were used: CH-1.0N (membrane material, PMMA; membrane area, 1.0 m2; hollow fiber inner diameter, 200 µm), CH-1.0W (prototype: PMMA; 1.0 m2; 240 µm), and CH-1.8W (PMMA; 1.8 m2; 240 µm). During the experiment, pressure changes, filter lifetime measured from pressure and protein removal performance were measured using an in vitro CHF experimental model with porcine blood. Results The filter lifetime of CH-1.8W was significantly longer than those of CH-1.0N and CH-1.0W. The total protein adsorption was significantly higher for the CH-1.0W and CH-1.8W filters than for the CH-1.0N filter. Conclusions A larger membrane area from 1.0 to 1.8 m2 contributed to a longer filter lifetime, while an increase in the hollow fiber inner diameter from 200 to 240 µm did not. On the other hand, the protein removal performance, especially the adsorption performance, was higher for membranes with a larger hollow fiber inner diameter from 200 to 240 µm.

Publisher

Springer Science and Business Media LLC

Subject

Transplantation,Urology,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3