Author:
Watanabe Maho,Fuji Asami,Tokushima Sayuri,Uemoto Keiko,Ueno Masayo,Shimomura Yuko,Ito Kenji,Yasuno Tetsuhiko,Masutani Kosuke,Saito Takao
Abstract
Abstract
Background
Peripheral artery disease (PAD) is a serious complication in hemodialysis (HD) patients. Low skin perfusion pressure (SPP) is a useful marker for detecting PAD. Malnutrition is an important cause of intractable complications. We examined the relationship between low SPP and various indicators of nutritional status.
Methods
A total of 120 patients on maintenance HD were enrolled for SPP measurement. SPP was measured at the soles of both feet during HD, and patients were divided into low SPP (L-SPP) and normal SPP (N-SPP) groups by 50 mmHg. The following values were determined by averaging four blood samples taken before SPP measurements every 3 months for one year: hemoglobin, total protein, albumin (Alb), total cholesterol, urea nitrogen, creatinine (Cr), potassium, calcium, phosphate, intact parathyroid hormone, iron (Fe), transferrin saturation (T-SAT), and C-reactive protein (CRP). We calculated the percent Cr production rate, dialysis index (Kt/V), normalized protein catabolic rate (nPCR), geriatric nutritional risk index (GNRI), and estimated salt intake using the required formulas. In addition, the age, body mass index, and presence of diabetes mellitus (DM) were compared between both groups along with all other measurements. Data were expressed as the mean ± standard deviation or median with interquartile range as appropriate. Differences in continuous variables between the two groups were analyzed by Student’s t-test or Wilcoxon’s rank-sum test, as appropriate. Multivariate logistic analysis and receiver operating curve (ROC) analysis were performed for significant variables. The results were expressed as odds ratios with respective 95% confidence intervals (CIs).
Results
The enrolled patients were 82 men and 38 women, with a mean age of 66.9 ± 13.3 years and HD duration of 4.76 (2.13–12.28) years (median interquartile range). Twenty patients belonged to the L-SPP group, suggesting PAD. Comparison between the L-SPP and N-SPP groups showed significant differences in age, Cr, Fe, T-SAT, CRP, nPCR, GNRI, DM, and estimated salt intake. When the GNRI, estimated salt intake, CRP, and DM were applied as independent variables for multiple logistic regression analysis, the GNRI (odds ratio: 0.857, 95% CI 0.781–0.941, p = 0.001), CRP (2.406, 1.051–3.980, p = 0.035), and DM (9.194, 2.497–33.853, p = 0.001) were found to be significant for L-SPP, and a cutoff level of 92.1 (sensitivity 80%, specificity 72%, AUC: 0.742, 95% CI 0.626–0.858, p = 0.001) in the GNRI obtained by ROC was consistent with the risk index in the elderly presented previously.
Conclusions
SPP measurement is an essential tool for detecting high-risk PAD in maintenance HD, which is affected by malnutrition, DM, and inflammation. The GNRI is important for the determination of malnutrition.
Publisher
Springer Science and Business Media LLC
Subject
Transplantation,Urology,Nephrology