The synergistic mechanism of fibroblast growth factor 18 and integrin β1 in rat abdominal aortic aneurysm repair

Author:

Guo Yilong,Wei Ren,He Yuan,Zhang Hongpeng,Deng Jianqing,Guo Wei

Abstract

Abstract Background Abdominal aortic aneurysms have a high mortality rate. While surgery is the preferred treatment method, the biological repair of abdominal aortic aneurysms is being increasingly studied. We performed cellular and animal experiments to investigate the simultaneous function and mechanism of fibroblast growth factor 18 and integrin β1 in the biological repair of abdominal aortic aneurysms. Methods Endothelial and smooth muscle cells of rat arteries were used for the cellular experiments. Intracellular integrin β1 expression was regulated through lentiviral transfection. Interventions with fibroblast growth factor 18 were determined according to the experimental protocol. Several methods were used to detect the expression of elastic fiber component proteins, cell proliferation, and migratory activity of endothelial and smooth muscle cells after different treatments. For animal experiments, abdominal aortic aneurysms were induced in rats by wrapping the abdominal aortae in sterile cotton balls soaked with CaCl2 solution. Fibroblast growth factor 18 was administered through tail vein injections. The local expression of integrin β1 was regulated through lentiviral injections into the adventitia of the abdominal aortic aneurysms. The abdominal aortae were harvested for pathological examinations and tensile mechanical tests. Results The expression of integrin β1 in endothelial and smooth muscle cells could be regulated effectively through lentiviral transfection. Animal and cellular experiments showed that fibroblast growth factor 18 + integrin β1 could improve the expression of elastic fiber component proteins and enhance the migratory and proliferative activities of smooth muscle and endothelial cells. Moreover, animal experiments showed that fibroblast growth factor 18 + integrin β1 could enhance the aortic integrity to withstand stretch of aortic aneurysm tissue. Conclusion Fibroblast growth factor 18 + integrin β1 improved the biological repair of abdominal aortic aneurysms in rats by increasing the expression of elastic proteins, improving the migratory and proliferative abilities of endothelial and smooth muscle cells, and improving aortic remodeling.

Funder

2020 Natural Science Foundation of Beijing, China

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3