Circulating metabolite profiles to predict response to cardiac resynchronization therapy

Author:

Gong Xue,Sun Zhonghan,Huang Zheyong,Zhou Qian,Yu Ziqing,Chen Xueying,Shao Wenqi,Zheng Yan,Liang Yixiu,Qin Shengmei,Su Yangang,Ge Junbo

Abstract

Abstract Background Heart failure is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT) with approximately one-third of non-response rate. Thus far, there is no specific biomarker to predict the response to CRT in patients with heart failure. In this study, we assessed the role of the blood metabolomic profile in predicting the response to CRT. Methods A total of 105 dilated cardiomyopathy patients with severe heart failure who received CRT were included in our two-stage study. Baseline blood samples were collected prior to CRT implantation. The response to CRT was defined according to echocardiographic criteria. Metabolomic profiling of serum samples was carried out using ultrahigh performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Results Seventeen metabolites showed significant differences in their levels between responders and non-responders, and these metabolites were primarily involved in six pathways, including linoleic acid metabolism, Valine, leucine and isoleucine biosynthesis, phenylalanine metabolism, citrate cycle, tryptophan metabolism, and sphingolipid metabolism. A combination of isoleucine, tryptophan, and linoleic acid was identified as an ideal metabolite panel to distinguish responders from non-responders in the discovery set (n = 51 with an AUC of 0.981), and it was confirmed in the validation set (n = 54 with an AUC of 0.929). Conclusions Mass spectrometry based serum metabolomics approach provided larger coverage of metabolome which can help distinguish CRT responders from non-responders. A combination of isoleucine, tryptophan, and linoleic acid may associate with significant prognostic values for CRT.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3