Author:
Bu Haisong,Gong Xueyang,Zhao Tianli
Abstract
Abstract
Background
Early identification of congenital heart disease (CHD) allows detection of the pulmonary arteriopathy in an early stage, and timely shunt closure can permanently reverse pulmonary arterial hypertension (PAH). However, surgical correction is not recommended in patients with irreversible PAH. Herein we report our experience about Eisenmenger’s syndrome in simple CHD.
Case presentation
From January 2017 to November 2018, a total of 8 CHD patients (3 ventricular septal defects (VSD), 2 atrial septal defects (ASD), and 3 patent ductus arteriosus (PDA), median age, 15.5 years [range, 3–18 years]) with PAH were detected by chest X-ray, electrocardiogram, transthoracic echocardiography (TTE), computed tomographic angiography (CTA) and cardiac catheterization. The median defect diameter, pulmonary artery pressure (PAP), pulmonary vascular resistance (PVR) were 16.5 mm (range, 3–30 mm), 75 mmHg (range, 60–86 mmHg), and 16 Woods units (range, 12–19 Woods units), respectively. Here, we report the representative cases of three types of simple CHD with irreversible PAH. The surgical correction was not performed in all patients who had fixed PAH and were referred to medical treatment.
Conclusions
PAH in CHD can be reversed by early shunt closure, but this potential is lost beyond a certain point of no return. This article highlights the essence of enhancing the level of healthcare and services in Chinese rural areas. Failure to accurately and timely assess PAH will delay effective treatment past optimal treatment time, and even lead to death.
Funder
Hunan Provincial Innovation Foundation for Postgraduate
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference14 articles.
1. van der Feen DE, Bartelds B, de Boer RA, Berger R. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease. HEART 2018.
2. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D42–50.
3. Chen C, Luo F, Wu P, Huang Y, Das A, Chen S, et al. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J Cell Mol Med. 2020.
4. Bu H, Yang Y, Wu Q, Jin W, Zhao T. Echocardiography-guided percutaneous closure of perimembranous ventricular septal defects without arterial access and fluoroscopy. BMC Pediatr. 2019;19:302.
5. Bu H, Liu L, Hu S, Tan Z, Zhao T. Targeted nextgeneration sequencing for research and diagnostics in congenital heart disease, and cleft lip and/or palate. Mol Med Rep. 2019;19:3831–40.