Heart rate variability and pulmonary dysfunction in rats subjected to hemorrhagic shock

Author:

Khodadadi Fateme,Bahaoddini Aminollah,Tavassoli Alireza,Ketabchi FarzanehORCID

Abstract

Abstract Background The activity of autonomic nervous system and its association with organ damage have not been entirely elucidated in hemorrhagic shock. The aim of this study was to investigate heart rate variability (HRV) and pulmonary gas exchange in hemorrhagic shock during unilateral subdiaphragmatic vagotomy. Methods Male Sprague Dawley rats were randomly assigned into groups of Sham, vagotomized (Vag), hemorrhagic shock (HS) and Vag + HS. HS was induced in conscious animals by blood withdrawal until reaching to mean arterial blood pressure (MAP) of 40 ± 5 mmHg. Then, it was allowed to MAP returning toward the basal values. MAP and heart rate (HR) were recorded throughout the experiments, HRV components of low (LF, sympathetic index), high (LH, parasympathetic index), and very low (VLF, injury index) frequencies and the LF/HF ratio calculated, and the lung histological and blood gas parameters assessed. Results In the initial phases of HS, the increase in HR with no change in MAP were observed in both HS and Vag + HS groups, while LF increased only in the HS group. In the second phase, HR and MAP decreased sharply in the HS group, whereas, only MAP decreased in the Vag + HS group. Meanwhile, LF and HF increased relative to their baselines in the HS and Vag + HS groups, even though the values were much pronounced in the HS group. In the third phase, HR, MAP, LF, HF, and the LF/HF ratio were returned back to their baselines in both HS and Vag + HS groups. In the Vag + HS group, the VLF was lower and HR was higher than those in the other groups. Furthermore, blood gas parameters and lung histology indicated the impairment of gas exchange in the Vag + HS group. Conclusions The sympathetic activity is predominant in the first phase, whereas the parasympathetic activity is dominant in the second and third phases of hemorrhagic shock. There is an inverse relationship between the level of VLF and lung injury in vagotomized animals subjected to hemorrhagic shock.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3