Diagnostic performance of a wearing dynamic ECG recorder for atrial fibrillation screening: the HUAMI heart study

Author:

Fu Wenxia,Li RuoguORCID

Abstract

Abstract Background Atrial fibrillation (AF) is the most prevalent cardiac dysrhythmia with high morbidity and mortality rate. Evidence shows that in every three patients with AF, one is asymptomatic. The asymptomatic and paroxysmal nature of AF is the reason for unsatisfactory and delayed detection using traditional instruments. Research indicates that wearing a dynamic electrocardiogram (ECG) recorder can guide accurate and safe analysis, interpretation, and distinction of AF from normal sinus rhythm. This is also achievable in an upright position and after exercises, assisted by an artificial intelligence (AI) algorithm. Methods This study enrolled 114 participants from the outpatient registry of our institution from June 24, 2020 to July 24, 2020. Participants were tested with a wearable dynamic ECG recorder and 12-lead ECG in a supine, an upright position and after exercises for 60 s. Results Of the 114 subjects enrolled in the study, 61 had normal sinus rhythm and 53 had AF. The number of cases that could not be determined by the wristband of dynamic ECG recorder was two, one and one respectively. Case results that were not clinically objective were defined as false-negative or false-positive. Results for diagnostic accuracy, sensitivity, and specificity tested by wearable dynamic ECG recorders in a supine position were 94.74% (95% CI% 88.76–97.80%), 88.68% (95% CI 77.06–95.07%), and 100% (95% CI 92.91–100%), respectively. Meanwhile, the diagnostic accuracy, sensitivity and specificity in an upright position were 97.37% (95% CI 92.21–99.44%), 94.34% (95% CI 84.03–98.65%), and 100% (95% CI 92.91–100%), respectively. Similar results as those of the upright position were obtained after exercise. Conclusion The widely accessible wearable dynamic ECG recorder integrated with an AI algorithm can efficiently detect AF in different postures and after exercises. As such, this tool holds great promise as a useful and user-friendly screening method for timely AF diagnosis in at-risk individuals.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3