Abstract
Abstract
Background
Coronary heart disease (CHD) is the most common cause of mortality globally, yet mitochondrial genetic mutations associated with CHD development remain incompletely understood.
Methods
The subjects from three Chinese families with LHON underwent clinical, genetic, molecular, and biochemical evaluations. Biochemical characterizations included measuring the effects of the15910C > T mutation on tRNAThr levels, enzymatic activity of electron transport chain complexes, membrane permeability, and the mitochondria-mediated generation of both reactive oxygen species (ROS) and adenosine triphosphate (ATP).
Results
We characterize mitochondrial genetic mutations in a three-generation Chinese family exhibiting signs of maternally inherited CHD. Of the 24 different family members in this pedigree we assessed, CHD was detected in 6, with variable severity and age of first appearance. When we sequenced the mitochondrial genomes of these individuals, we found a tRNAThr 15910C > T mutation of the Eastern Asian haplogroup M7b’c. This mutation is predicted to destabilize the strongly conserved (24C-10G) base-pairing, thereby disrupting tRNAThr functionality. When we performed Northern blotting, we detected we observed a 37.5% reduction in tRNAThr levels at baseline in cybrid cell lines bearing the 15910C > T mutation. When we conducted western blot analysis, we detected a ~ 24.96% decrease in mitochondrial translation rates in these same cells.
Conclusions
In the present report, Together these findings suggest a possible link between this 15910C > T tRNAThr mutation and CHD, potentially offering new avenues for future disease intervention.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献