Author:
Wang Dashuai,Wang Su,Song Yu,Wang Hongfei,Zhang Anchen,Wu Long,Huang Xiaofan,Ye Ping,Du Xinling
Abstract
Abstract
Background
Despite surgical advances, acute type A aortic dissection remains a life-threatening disease with high mortality and morbidity. Tracheostomy is usually used for patients who need prolonged mechanical ventilation in the intensive care unit (ICU). However, data on the risk factors for requiring tracheostomy and the impact of tracheostomy on outcomes in patients after Stanford type A acute aortic dissection surgery (AADS) are limited.
Methods
A retrospective single-institutional study including consecutive patients who underwent AADS between January 2016 and December 2019 was conducted. Patients who died intraoperatively were excluded. Univariate analysis and multivariate logistic regression analysis were used to identify independent risk factors for postoperative tracheostomy (POT). A nomogram to predict the probability of POT was constructed based on independent predictors and their beta-coefficients. The area under the receiver operating characteristic curve (AUC) was performed to assess the discrimination of the model. Calibration plots and the Hosmer–Lemeshow test were used to evaluate calibration. Clinical usefulness of the nomogram was assessed by decision curve analysis. Propensity score matching analysis was used to analyze the correlation between requiring tracheostomy and clinical prognosis.
Results
There were 492 patients included in this study for analysis, including 55 patients (11.2%) requiring tracheostomy after AADS. Compared with patients without POT, patients with POT experienced longer ICU and hospital stay and higher mortality. Age, cerebrovascular disease history, preoperative white blood cell (WBC) count and renal insufficiency, intraoperative amount of red blood cell (RBC) transfusion and platelet transfusion were identified as independent risk factors for POT. Our constructed nomogram had good discrimination with an AUC = 0.793 (0.729–0.856). Good calibration and clinical utility were observed through the calibration and decision curves, respectively. For better clinical application, we defined four intervals that stratified patients from very low to high risk for occurrence of POT.
Conclusions
Our study identified preoperative and intraoperative risk factors for POT and found that requiring tracheostomy was related to the poor outcomes in patients undergoing AADS. The established prediction model was validated with well predictive performance and clinical utility, and it may be useful for individual risk assessment and early clinical decision-making to reduce the incidence of tracheostomy.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine