Circulating heat shock protein 27 as a novel marker of subclinical atherosclerosis in type 2 diabetes: a cross-sectional community-based study

Author:

Wang Xinru,Shi Jie,Lu Bin,Zhang Weiwei,Yang Yehong,Wen Jie,Hu Renming,Yang Zhen,Wang Xuanchun

Abstract

Abstract Background Heat shock protein 27 (HSP27) has been proposed as a vital protective factor in atherosclerosis. The objective of the present study was to evaluate the association between circulating HSP27 and carotid intima–media thickness (IMT) in individuals with type 2 diabetes and to determine whether HSP27 represents an independent marker of subclinical atherosclerosis in this patient population. Methods We performed a cross-sectional community-based study in 186 Chinese subjects with a median duration of type 2 diabetes of 8.2 years who underwent ultrasound carotid IMT measurement. Serum HSP27 levels were assessed by ELISA. Results Serum HSP27 levels were significantly higher in the IMT (+, > 1.0 mm) group than in the IMT (−, ≤1.0 mm) group, with the median values of 8.80 ng/mL (5.62–12.25) and 6.93 ng/mL (4.23–9.60), respectively (P = 0.006). The discriminative value of HSP27 to evaluate IMT was 7.16 ng/mL and the area under the curve was 0.72 (95%CI = 0.64–0.80, P = 0.0065). Spearman’s rank correlation analysis demonstrated that the concentrations of circulating HSP27 were positively associated with carotid IMT (r = 0.198, P = 0.007) and blood urea nitrogen (r = 0.170, P < 0.05). Furthermore, in the logistic model, serum HSP27 levels were found to be independent predictors for carotid IMT in type 2 diabetic patients after adjustment for onset age of diabetes, blood pressure, total cholesterol and C-reactive protein (OR = 1.085, P = 0.022). Conclusions Circulating HSP27, positively correlates with carotid IMT, is an independent predictor for early atherosclerotic changes in diabetes, and may represent a novel marker of subclinical atherosclerosis in type 2 diabetes.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3