The effect of subdiaphragmatic vagotomy on heart rate variability and lung inflammation in rats with severe hemorrhagic shock

Author:

Khodadadi Fateme,Ketabchi Farzaneh,Khodabandeh Zahra,Tavassoli Alireza,Lewis Gregory F.,Bahaoddini Aminollah

Abstract

Abstract Background The influence of cutting the sub-diaphragmatic branch of the vagus nerve on heart rate variability (HRV) and inflammatory reaction to severe hemorrhagic shock has not been determined prior to this study. Methods Male Sprague–Dawley rats were divided into four groups of Sham, sub-diaphragmatic vagotomized (Vag), subacute (135 ± 2 min) hemorrhagic shock (SHS), and sub-diaphragmatic vagotomized with SHS (Vag + SHS). Hemodynamic parameters were recorded and HRV calculated during multiple phases in a conscious model of hemorrhagic shock. The expressions of TNF-α and iNOS were measured in the spleen and lung tissues at the conclusion of the protocol. Results Decreases in blood pressure during blood withdrawal were identical in the SHS and Vag + SHS groups. However, heart rate only decreased in the Nadir-1 phase of the SHS group. HRV indicated increased power in the very-low, low, and high (VLF, LF, and HF) frequency bands during the Nadir-1 phase of the SHS and Vag + SHS groups, albeit the values were higher in the SHS group. In the recovery phase, the HF bands were only lower in the SHS group. After hemorrhagic shock followed by resuscitation, the expression of TNF-α and iNOS increased in the spleen and lung of the SHS group, and the expression of these genes was significantly lower in the Vag + SHS group than in the SHS group. Conclusion Parasympathetic activity increases during the hypotensive phase of hemorrhagic shock, whereas the cardiac vagal tone decreases in the recovery phase. Sub-diapragmatic vagotomy blunts the cardiac vagal tone during hemorrhagic shock, but its effect is reversed in the recovery phase. The vagus nerve plays a role in proinflammatory responses in the lungs and spleen in subacute hemorrhagic shock followed by resuscitation.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3